Searching for Ideal Priors for Covariance Matrices

Mohsen Pourahmadi
Division of Statistics
Northern Illinois University

SAMSI Bayesian Focus Week
Oct. 30 - Nov. 3, 2006
Outline
1. Unconstrained Parameterization and Priors: GLM

2. ARMA Models & Stationary Processes: Toeplitz matrices & partial correlations

3. Variance-Correlation Decomposition: Partial correlations

4. Spectral Decomposition: Orthogonal matrices

5. Cholesky Decompositions: A sequence of regressions

6. Conclusions
1. Unconstrained Parameterization & Priors: GLM

- The theory of generalized linear models (GLM) underscores the importance of introducing **unconstrained** and **interpretable** parameters. The link function is usually not unique, it acts *componentwise* on the mean vector μ.

- The revolution in Bayesian computation in the early 1990’s has encouraged going beyond the standard **conjugate priors** (inverse Wishart) for covariance matrices.

- Various decompositions of covariance matrices lead to flexible priors and partially unconstrained reparameterizations. Some of these are **unique** up to a **rotation** as in factor analysis. The most interpretable ones rely on the concepts of partial correlation/regressions.
2. ARMA Models & Stationary Processes:

- \(AR(2) : \ y_t = \phi_1 y_{t-1} + \phi_2 y_{t-2} + \varepsilon_t. \)

Stationary Region: All \((\phi_1, \phi_2) \in \mathbb{R}^2\) so that the roots of

\[
1 - \phi_1 z - \phi_2 z^2 = 0,
\]

lie outside the unit circle.

\(S_2 : -1 < \phi_2 < 1, \ -1 + \phi_2 < \phi_1 < 1 - \phi_2. \)

Since \(-1 < \phi_2 < 1, \ -1 < \frac{\phi_1}{1-\phi_2} < 1, \)

Using the Fisher \(z\)-transform of \(\phi_2\) and \(\frac{\phi_1}{1-\phi_2}\) gives the unconstrained region

\(S_2^* : \ \phi_2^* = \log \frac{1 - \phi_2}{1 + \phi_2} \in \mathbb{R}, \ \phi_1^* = \log \frac{1 - \phi_2 + \phi_1}{1 - \phi_2 - \phi_1} \in \mathbb{R}. \)

Now, normal priors can be introduced for \((\phi_1^*, \ \phi_2^*)\) as in Marriot & Smith (1992). For more general polynomials, use the fact that any polynomial can be factored in terms of polynomials of degree \(\leq 2.\)
- Durbin-Levinson Algorithm (Levinson, 1947, Durbin, 1960) connects the covariance function \(\{\gamma_k\} \) of a stationary process to its partial correlation function \(\{\pi_k\} \) in a natural way. The latter quantities vary freely in the range \([-1, 1]\).

- R. H. Jones (1980) used partial correlations to reparameterize ARMA models. It has been the backbone of most ARMA fitting procedures in software packages since 1980.

 There is a one-to-one correspondence between the partial \textbf{correlation function} \(\{\pi_k\} \) and the \textbf{covariance function} \(\{\gamma_k\} \) of a stationary process.
3. Variance-Correlation Decomposition: $\Sigma \leftrightarrow (R, D)$

$$
\Sigma = D \ R \ D \\
D = diag \left(\sqrt{\sigma_{11}}, \ldots, \sqrt{\sigma_{pp}} \right) \\
R = (\rho_{ij}), \rho_{ij} = corr(y_i, y_j).
$$

- $\log \sqrt{\sigma_{ii}}$ is unconstrained, but the entries of R are constrained.

- How to assign priors to or simulate R?

The common practice is to assign priors to R or to each of its entries and simulate (draw) one entry at a time with a view to keep R positive definite.

- Barnard, McCulloch & Meng (2000):

- $p(\Sigma) = p(R, D) = p(R|D)p(D)$.
 i. R & D can be assumed independent,
 ii. the dist. of R is exchangeable or invariant to permutation of the indices,
 iii. use diffuse priors on R.

- Two suggested choices for $p(R)$ are
 i. a marginally uniform prior,
 ii. the jointly uniform prior
- A suggested alternative:
 uniform priors on the partial correlations
- They use Gibbs sampler and draw a particular correlation $\rho_{ij} = \rho$, given the other entries of R.

Q. Starting with R pd, what values of $\rho_{ij} = \rho$ will keep $R(\rho)$ positive definite?
A. (1) $R(\rho)$ is pd iff $|R(\rho)| > 0$.

(2) $|R(\rho)| = a\rho^2 + b\rho + c$,
where a, b and c do not depend on ρ, and

$$c = |R(0)|, \quad b = \frac{|R(1)| - |R(-1)|}{2},$$

$$a = \frac{|R(1)| + |R(-1)| - 2|R(0)|}{2}$$
(3) $a\rho^2 + b\rho + c > 0$ gives the interval of values of ρ which keeps $R(\rho)$ pd.

- This requires computing many determinants, is not fast when p is large. Wong, Carter and Kohn (2003) give a faster method of computing a,b,c using the Cholesky decomposition of R.
• Wong, Kohn & Carter (2003): $\Sigma^{-1} = DRD \leftrightarrow (R, D)$

- For D and R from Σ^{-1}, their nonredundant entries are the
 partial variances $\text{var}(y_i|y_k, k \neq i)$,
 and the partial correlations $\text{corr}(y_i, y_j|y_k, k \neq i, j)$.

- Covariance selection (Dempster, 1972):
 i. Set certain off-diagonal entries of Σ^{-1} to zero.
 ii. Random effect selection requires certain diagonal entries
 to be zero.

- Gaussian graphical models

- Covariance selection priors (Kohn et al. 2003, 2006)

 Make Σ^{-1} sparse by forcing certain entries of R to be zero.
 Works for decomposable (Giudici & Green, 1999) and nonde-
 composable (Roverato, 2002, Atay-Kayis & Massam, 2006,
 ⋅⋅⋅) graphs.

 Liechty, Liechty and Muller (2004); Liu & Daniels (2006).
• “Sequential” Partial Correlations

- H. Joe (2006) Reparametrizes R in terms of

$$\rho_{i,i+1}, \ i = 1, \ldots, p - 1,$$

and the partial correlations

$$\rho_{i,j|i+1,\ldots,j-1} = \rho_{i,j|\text{int}(i,j)}, \ i - j \geq 2,$$

where these vary freely in $(-1, 1)$.

$$1 \quad \rho_{i,i+1} \quad \rho_{i,i+k|\text{int}(i,i+k)}$$

Theorem. $|R| = \prod_{k=1}^{p-1} \prod_{i=1}^{p-k} \left(1 - \rho_{i,i+k|\text{int}(i,i+k)}^2\right)$.

Examples.

For $p = 3$, $|R| = (1 - \rho_{12}^2)(1 - \rho_{23}^2)(1 - \rho_{13|2}^2)$.

For $p = 4$, $|R| = (1 - \rho_{12}^2)(1 - \rho_{23}^2)(1 - \rho_{34}^2)$

$$\left(1 - \rho_{13|2}^2\right)\left(1 - \rho_{24|3}^2\right)\left(1 - \rho_{14|23}^2\right).$$
- A prior for R or a random pd correlation matrix can be generated by choosing independent distributions $g_{ij}(\cdot)$ on $(-1, 1)$ for these new parameters. More precisely,

$$f(\rho_{ij,1\leq i<j\leq p}) = \prod_{k=1}^{p-1} \prod_{i=1}^{p-k} g_{i,i+k}(\rho_{i,i+k|\text{int}(i,i+k)}) \times |J_p|,$$

where $|J_p|$ is the determinant of the Jacobian for the transformation from $(\rho_{ij, 1 \leq i < j \leq p})$ to $(\rho_{ij|\text{int}(i,j)})$.

- It turns out that

$$|J_p| = \left[\prod_{k=1}^{p-2} \prod_{i=1}^{p-k} \left(1 - \rho_{i,i+k|\text{int}(i,i+k)}^2 \right)^{p-1-k} \right]^{-1/2}.$$

Note that the exponents depend on k, but not on i. In a sense, stationarity is implied along the k-th diagonal.

- This suggests to choose $g_{i,i+k}(\cdot)$ as certain beta density to achieve a simple form for f, the joint density of $R = (\rho_{ij})$. Recall the linearly transformed symmetric Beta (α, α) on $(-1, 1)$ with the density:

$$g(u) = 2^{-2\alpha+1} [B(\alpha, \alpha)]^{-1} (1-u^2)^{\alpha-1}, |u| < 1, \alpha > 0.$$
Choosing $B(\alpha_k, \alpha_k)$ for $\rho_{i,i+k|\text{int}(i,i+k)}$, it follows that f is proportional to

$$
\prod_{k=1}^{p-1} \prod_{i=1}^{p-k} \left(1 - \rho_{i,i+k|\text{int}(i,i+k)}^2\right)^{\alpha_k - 1 - (p-1-k)/2}.
$$

Theorem. With $\alpha_k = \alpha + \frac{1}{2}(p - 1 - k)$,

(a) the above density is proportional to

$$
\prod_{k=1}^{p-1} \prod_{i=1}^{p-k} \left(1 - \rho_{i,i+k|\text{int}(i,i+k)}^2\right)^{\alpha - 1} = \lvert R \rvert^{\alpha - 1}.
$$

(b) the same density would arise if the indices of the correlation matrix were permuted before computing the partial correlations along the kth diagonal, $k = 1, \ldots, p - 1$.

11
- Partial Correlation Vines:

- Theorem. There is a one-to-one correspondence between the set of $p \times p$ positive-definite correlation matrices and the set of partial correlations for any regular vine on p elements.

- A regular vine is a tool for picking out those partial correlations which uniquely determine the correlation matrix.
4. The Spectral Decomposition:
 \[\Sigma = P \Lambda P', \]
 where \(P \) is an orthogonal matrix, \(\Lambda = \text{diag}(\lambda_1, \cdots, \lambda_p) \),
 \[\lambda_1 > \lambda_2 > \cdots > \lambda_p \]
 are the distinct eigenvalues of \(\Sigma \) and the columns of \(P \)
 are the respective normalized eigenvectors.

- \(\Sigma \leftrightarrow (P, \Lambda) \)
- Of course, \(P \) is constrained by orthogonality.

Q. How to make it unconstrained or assign priors to its entries?

A. (1) **Givens angles:** Yang and Berger (1994); reference priors
 Daniels and Kass (1999); normal priors on the logit.

 (2) Householder reflections: Pinheiro (1994); Bates & Pinheiro
 (1996), closely related to the Givens angles

 - These are hard to interpret statistically.

 - Hard to explain in a short time.

(4) Log Parametrization : A matrix \(P \) is **orthogonal**, iff
 \[P = e^U \]
 where \(U \) is **skew-symmetric** (Muirhead, 1982).

 - Thus, \(\log P = U \), has **unconstrained** parameters, hard to interpret, has not been used much.
• Logarithmic Models for Σ (Leonard et al. 1992, 1996)

- A symmetric matrix Σ is pd iff $\Sigma = e^A$, where A is a real symmetric matrix with \textit{unconstrained} entries.

- Entries of A are hard to interpret.

Brown, Zidek and Li (1994); Yang and Berger (1994)

• Finally, the reparametrization of Σ in terms of (P, Λ) is reasonable so long as the eigenvalues are \textit{distinct}. The situation is not that clear, otherwise.

Example:

(i.) $\Sigma = \sigma^2 I$, $\Sigma = (P, \sigma^2 I)$, for any orthogonal matrix P.

(ii.) Compound symmetry, $\lambda_1 = 1 + (p - 1)\rho$,

$\lambda_2 = \cdots = \lambda_p = 1 - \rho$.

(iii.) Spiked covariances.
5. Cholesky Decompositions:

In most textbooks and software packages, the Cholesky decomposition of Σ is of the form

$$\Sigma = CC',$$

where C is a unique lower triangular matrix with positive diagonal entries (Cholesky, 1918; Bartlett, 1933). It has been used frequently in optimization problems involving pd matrices (Kalman, 1961; Lindstrom and Bates, 1988, 1990: linear and nonlinear mixed models, · · ·).

Interpretation of the entries of $C = (c_{ij})$ is difficult (Bates and Pinheiro, 1996). However, reducing C to unit lower triangular matrices through post(pre)-multiplication by the inverse of

$$D = diag(c_{11}, \ldots, c_{pp}),$$

makes the task of interpretation much easier (Pourahmadi, 1999; Chen & Dunson, 2003).

$$\Sigma = CD^{-1} DD^{-1}C' = D D^{-1}C C' D^{-1} D.$$

- Priors for $\Sigma = (L, D)$ or (\tilde{L}, D)
 - Brown, Zidek and Li (1994): Sequential Priors
 Multivariate normal / Inverse Wishart.
 - Pourahmadi & Daniels (2002): Sequential Priors
 Normal / Inverse gamma.
- Smith & Kohn (2002): Variable selection priors

- Daniels & Zhao (2003): Normal / Inverse gamma in LMM.

- Cai & Dunson (2006): Priors on (L, D) in GLMM.

- Huang et al. (2006): Penalized normal likelihood with LASSO penalty (Laplace priors on L).
Time Series & Cholesky Decomposition:

The AR(2) model

\[y_t = \phi_1 y_{t-1} + \phi_2 y_{t-2} + \varepsilon_t, \]

for \(t = 1, 2, \ldots, n \) can be written as

\[
\begin{align*}
y_1 &= \phi_1 y_0 + \phi_2 y_1 + \varepsilon_1, \\
y_2 &= \phi_1 y_1 + \phi_2 y_0 + \varepsilon_2, \\
& \vdots \\
y_p &= \phi_1 y_{p-1} + \phi_2 y_{p-2} + \varepsilon_p.
\end{align*}
\]

Setting \(\varepsilon = (\varepsilon_1, \ldots, \varepsilon_p) \) and \(e = (y_1, y_0) \), it becomes the **regression-like model**

\[TY = \varepsilon + Ke, \]

where

\[
T = \begin{bmatrix}
1 & 0 & 0 & \cdots & \cdots & 0 \\
-\phi_1 & 1 & 0 & \cdots & \cdots & 0 \\
-\phi_2 & -\phi_1 & 1 & \cdots & \cdots & 0 \\
0 & \ddots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & -\phi_2 & -\phi_1 & 1
\end{bmatrix}, \quad K = \begin{bmatrix}
\phi_2 & \phi_1 \\
0 & \phi_2 \\
\vdots & \vdots \\
0 & \cdots & 0
\end{bmatrix} = \begin{bmatrix}
K_1 \\
\vdots \\
0
\end{bmatrix}.
\]

When \(\varepsilon \) and \(e \) are independent, it follows that

\[
T \text{cov}(Y)T' = \sigma^2 I_p + \begin{pmatrix} K_1 \text{cov}(e) K_1' & 0 \\ 0 & 0 \end{pmatrix} = A \text{ nearly diagonal matrix.}
\]

• Now, we force \(K \) to be zero using the idea of regression.
Regress y_t on its predecessors:

$$y_t = \phi_{t,t-1} y_{t-1} + \cdots + \phi_{t1} y_1 + \varepsilon_t,$$

in matrix form

$$
\begin{bmatrix}
1 \\
-\phi_{21} & 1 \\
-\phi_{31} & -\phi_{32} & 1 \\
\vdots & \vdots & \ddots \\
-\phi_{p1} & -\phi_{p2} & \cdots & -\phi_{p,p-1} & 1
\end{bmatrix}
\begin{bmatrix}
y_1 \\
y_2 \\
\vdots \\
y_p
\end{bmatrix}
=
\begin{bmatrix}
\varepsilon_1 \\
\varepsilon_2 \\
\vdots \\
\varepsilon_p
\end{bmatrix} ,
T y = \varepsilon,
$$

$$T \Sigma T' = D,$$

$$\Sigma = T^{-1} DT'^{-1} = LDL'.$$

This idea reduces the unintuitive task of modeling covariance to that of a sequence of regressions (with varying-order and varying-coefficients). Pourahmadi (1999, 2000) and Chen and Dunson (2003).
6. Conclusions

- Close connection between unconstrained parametrizations of covariance matrices and introducing flexible priors.

- Reparametrization in terms of partial correlations and regression coefficients.

- **Nonuniqueness** involving “ordering” of the variables in computing partial correlations, Cholesky decompositions, and spectral decomposition when the eigenvalues are not distinct.

- Can one take advantage of this nonuniqueness as in factor analysis, ···?