Acknowledgements

The following individuals have made significant contributions toward the revision of this document since its original posting in October 2003.

Joan Barrett, M.Ed.
Mathematics Coordinator
Madison County Regional Office of Education
Edwardsville, IL

Megan Forness, M.Ed.
Principal Performance Consultant
Illinois State Board of Education
Springfield, IL

Edna Bazik, Ph.D.
Mathematics Teacher
Hinsdale Middle School
Hinsdale, IL

Frances L. Fullilove
CMSI Mathematics Coordinator
Office of Math & Science
Chicago Public Schools
Chicago, IL

Kelly Brown
Mathematics Teacher
James Hart School
Homewood, IL

Dixie Gage, M.S.
Intermediate Teacher
Carlinville Intermediate School
Carlinville, IL

Liz Burton
Retired Mathematics Teacher
VIT Elementary School
Table Grove, IL

Francine Gray
CMSI Mathematics Facilitator
Office of Math and Science
Chicago Public Schools
Chicago, IL

Catherine Ditto, NBCT
CPS Teacher on Loan
TIMS Project
Institute for Mathematics & Science Education
Chicago, IL

Trish Guinee, Ph.D.
Middle School Mathematics Teacher
Peoria Public School District 150
Peoria, IL

Dr. John A. Dossey
Distinguished University Professor of Mathematics Emeritus
Illinois State University
Normal, IL

Jan Haake
Director of Curriculum and Instruction PreK–5
Plainfield CCSD #202
Plainfield, Illinois 60544

Claran Einfeldt
President
CE MATH 2
Urbana, IL

Catherine R. Kelso
Co-Director, TIMS Project
Institute for Mathematics & Science Education
University of Illinois at Chicago
Chicago, IL

Bret Feranchak
Senior Research Analyst
Office of Math & Science
Chicago Public Schools
Chicago, IL

Leslie Knicl
Mathematics Coordinator, Grades 6–12
Champaign Unit 4 Schools
Champaign, IL
Mary Ellen Leonard
Staff Development Consultant
ROE SchoolWorks
Rantoul, IL

Mary Modene
Fifth Grade Teacher
Roosevelt School
Belleville District 118
Belleville, IL

Bill Savage, NBCT
Mathematics Teacher
Gregory Middle School
Naperville, IL

Bri Savic, M.Ed.
Elementary School Teacher
Maercker School District 60
Clarendon Hills, IL

Polly Perkins, Ed.S.
Director of Curriculum & Instruction
Rockford Public Schools
District 205
Rockford, IL

Dr. Dorothy S. Strong
Director of BiMathematics
Project of the Education Support Group
Chicago, IL

Randy Pippen
Director of Curriculum
Lisle Community Unit School District 202
Lisle, IL

Jan Taylor, M.Ed.
Teacher Resource Specialist
Woodland School
Joliet District 86
Joliet, IL

Sue Pippen
Mathematics Department Chair
Hinsdale South High School
District 86
Darien, IL

Carol VanderKloot
K–12 Mathematics Coordinator
Springfield Public Schools
Springfield, IL

Margo Richardson, M.Ed.
Middle School Mathematics Teacher
Urbana Middle School
Urbana, IL

Phil Wagerich, Ph.D.
Professor, Department of Mathematics, Statistics, and Computer Science
Institute for Mathematics & Science Education
University of Chicago
Chicago, IL

Judy Rocke
Fifth Grade Teacher
Olympia North Elementary
Olympia CUSD 16
Danvers, IL

Mary Modene
Fifth Grade Teacher
Roosevelt School
Belleville District 118
Belleville, IL
Introduction to the Illinois Mathematics Assessment Framework
Grades 3–8

The Illinois Mathematics Assessment Framework is designed to assist educators, test developers, policy makers, and the public by clearly defining those elements of the Illinois Learning Standards that are suitable for state testing. It is not designed to replace a local mathematics curriculum and should not be considered a state mathematics curriculum. The Framework defines the mathematics content that will be assessed in the Illinois Standards Achievement Test (ISAT) beginning with the 2005-2006 school year.

Assessment Objectives
The Framework contains assessment objectives, clear and concise statements of testable material at each grade level assessed. Each assessment objective aligns to the Illinois Learning Standards and, in many cases, to the Performance Descriptors posted on the Illinois State Board of Education Web site (www.isbe.net/ils). Each year’s assessment will measure a sample of the content in the Framework with sufficient overlap from year to year to allow for annual comparisons. The assessment objectives listed for each grade level may be measured on any given assessment in any given year. One should not presume that every objective will be measured every year. The Framework communicates the range of objectives that may be assessed at a given grade level. Objectives to be assessed flow in and out of the Framework so it is clear when an objective will start being assessed and when it will no longer be assessed.

Content Emphasis
While the precise content on each year’s tests will vary from year to year, the relative emphasis on the State Goals and Illinois Learning Standards will not. The proportion of each year’s tests devoted to each category is clearly specified in the Mathematics Content Category Table on page 13. These percents are estimates used to guide the general distribution of items throughout the test.

Framework Structure
This document employs a general organizational structure designed for ease of use. Each State Goal for mathematics is the main organizer, followed by the Illinois Learning Standards for mathematics within each of these State Goals. A shaded column to the left of the assessment objectives lends additional guidance for navigating topics within the Illinois Learning Standards. Each assessment objective has a unique identifier with three components.

Example: 6.3.01

<table>
<thead>
<tr>
<th>6</th>
<th>3</th>
<th>01</th>
</tr>
</thead>
<tbody>
<tr>
<td>State Goal</td>
<td>Grade Level</td>
<td>Objective Number</td>
</tr>
</tbody>
</table>

The first component, “6,” indicates the numbered State Goal as defined in the Illinois Learning Standards. The second component, “3,” indicates the grade level. The third component, “01,” indicates that this is the first assessment objective for this State Goal at this grade level.
Cognitive Complexity
Items on the assessment will represent three levels of complexity: low, moderate, and high\(^1\). The mathematical complexity of an item is not directly related to its format (multiple-choice, short constructed-response, or extended-response). Items requiring students to generate a response tend to make somewhat heavier demands on students than multiple-choice items, but that is not always the case. Any type of item can deal with mathematics of greater or less depth and sophistication. There are multiple-choice items that can assess complex mathematics and constructed-response items that can assess routine mathematical ideas. The ideal balance sought for the mathematics assessment is not necessarily the balance one would wish for curriculum or instruction in mathematics education. Balance here must be considered in the context of the constraints of this assessment, including its timed nature and its paper-and-pencil format. Items of all three types are essential to assess the full range of students’ mathematical achievement. Within that context, the ideal balance would be that about half of the items are of moderate complexity, with the remainder of the items being equally distributed between low and high complexity. This balance would apply for all grade levels.

<table>
<thead>
<tr>
<th>Low Complexity</th>
<th>Moderate Complexity</th>
<th>High Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>This category relies heavily on the recall and recognition of previously-learned concepts and principles. Items typically specify what the student is to do, which is often to carry out some procedure that can be performed mechanically. It is not left to the student to come up with an original method or solution. The following are some, but not all, of the demands that items in the low-complexity category might make:</td>
<td>Items in the moderate-complexity category involve more flexibility of thinking and choice among alternatives than those in the low-complexity category. They require a response that goes beyond the habitual, is not specified, and may require more than a single step. The student is expected to decide what to do, using informal methods of reasoning and problem-solving strategies, and to bring together skill and knowledge from various domains. The following illustrate some of the demands that items of moderate complexity might make:</td>
<td>High-complexity items make heavy demands on students, who must engage in more abstract reasoning, planning, analysis, judgment, and creative thought. A satisfactory response to the item requires that the student think in an abstract and sophisticated way. The following illustrate some of the demands that items of high complexity might make:</td>
</tr>
</tbody>
</table>
| • Recall or recognize a fact, term, or property
• Recognize an example of a concept
• Compute a sum, difference, product, or quotient
• Recognize an equivalent representation
• Perform a specified procedure
• Evaluate an expression in an equation or formula for a given variable
• Solve a one-step word problem
• Draw or measure simple geometric figures
• Retrieve information from a graph, table, or figure | • Represent a situation mathematically in more than one way
• Select and use different representations, depending on situation and purpose
• Solve a word problem requiring multiple steps
• Compare figures or statements
• Provide a justification for steps in a solution process
• Interpret a visual representation
• Extend a pattern
• Retrieve information from a graph, table, or figure and use it to solve a problem requiring multiple steps
• Formulate a routine problem, given data and conditions
• Interpret a simple argument | • Describe how different representations can be used for different purposes
• Perform a procedure having multiple steps and multiple decision points
• Analyze similarities and differences between procedures and concepts
• Generalize a pattern
• Formulate an original problem, given a situation
• Solve a novel problem
• Solve a problem in more than one way
• Explain and justify a solution to a problem
• Describe, compare, and contrast solution methods
• Formulate a mathematical model for a complex situation
• Analyze the assumptions made in a mathematical model
• Analyze or produce a deductive argument
• Provide a mathematical justification |

\(^1\) These levels and their descriptions are adapted from *Mathematics Framework for the 2005 National Assessment of Educational Progress*, author National Assessment Governing Board (September 2004).
Calculators
The consideration of calculator usage on large–scale assessments is a topic that has received considerable attention over the past three decades. Many discussions about the appropriate use of such technology in a mathematics assessment context generally center on the topic of what constitutes "basic mathematical skills" and what students need to be able to do without the aid of technology. At the same time, students are being educated to function in a world that is becoming increasing reliant on technology. The balance of focusing on new processes while still holding some historical expectations is difficult, both for parents and teachers in such an era of flux and transition.

Research on student use of calculators in mathematics classes shows that students who have appropriate instruction on when and how to use calculators coupled with practice using them in learning mathematics have better attitudes toward mathematics and feel empowered. Using a calculator allows students to shift from allocating a lot of time and energy to calculations during working to solve problems. The use of calculators also allows teachers to present the students with more realistic problems. Further, students who know when and how to use mental mathematics, estimation, paper–and–pencil algorithms, or technology achieve far higher scores than students who are relegated to programs that focus on memorization and practice of traditional skills in the absence of technology.

For these reasons, the state mathematics assessment takes a varied approach to the use of technology across grades 3–8. In grade 3, students are not allowed to use calculators on any part of the mathematics assessment, unless it is a documented accommodation for a student with an Individualized Education Program (IEP). In grades 4 through 8, students are allowed to use a calculator on any part of the mathematics assessment. This policy was developed in light of the continued work on the development of algorithms and the basic facts of whole numbers in grade 3 and the general lighter use of technology in classrooms at this level. Teachers in classrooms must continue to help students learn when and how to solve problems without the aid of technology as well.

Students are allowed to use any calculator they normally use in their mathematics classes. Schools, teachers, and parents should be advised that when students attempt to use calculators with which they are unfamiliar, their performance may suffer. In a like manner, students who are not taught when and how to use a calculator as part of their regular mathematics instructional program are also at risk. At grade 3, the assessment will focus on students’ knowledge as assessed without access to technology.

Other Assessment Tools
All students in grades 3 through 8 will be provided with a ruler to use during the mathematics assessment. This ruler will allow students to measure in both inches and centimeters. All students in grades 7 and 8 will be provided with a reference sheet to use during the mathematics assessment. This reference sheet includes any necessary formulas for items at those grades.

Item Formats
Historically, large–scale assessments of mathematics have employed a series of multiple–choice items. This item format was used because it was viewed as contributing to higher reliability, providing objectivity, reducing scoring costs, and easing administration requirements.

However, research in assessment and learning indicates that valid evaluations of students’ abilities to reason, problem solve, and communicate their mathematical knowledge and capabilities require more extensive records of students’ work. Hence, the mathematics assessments must employ a wider selection of items formats in assessing Illinois students’ capabilities to solve problems, communicate their knowledge, show their reasoning, and reflect their ability to translate among representations for mathematical concepts and processes. Thus, in addition to continued use of multiple-choice items, the mathematics assessments will include extended-response and short constructed-response items. Each of these item formats is described below.

Multiple-Choice Items

Multiple-choice (MC) items require students to read, reflect, or compute and then to select the alternative that best expresses what they believe the answer to be. This format is appropriate for quickly determining whether students have achieved certain knowledge and skills. Well-designed multiple-choice items can measure student knowledge and understanding, as well as students’ selection and application of problem-solving strategies. A carefully constructed multiple-choice item can assess any of the levels of mathematical complexity from simple procedures to sophisticated concepts. They can be designed to reach beyond the ability of students to “plug-in” alternatives or eliminate choices to determine a correct answer. Such items are limited in the extent to which they can provide evidence of the depth of students’ thinking.

Extended-Response Items

Extended-response (ER) items require students to consider a situation that demands more than a numerical response or a short verbal communication. They ask students to model, as much as possible, real problem solving in a large scale assessment context. When an ER item proposes a problem to solve, the student is asked to understand what is required to “solve” the situation, choose a plan of attack, carry out the attack, and interpret the solution derived in terms of the original situation. Students are expected to clearly communicate their decision-making processes in the context of the task proposed by the item (e.g., through writing, pictures, diagrams, or well-ordered steps).

Short Constructed-Response Items

Short constructed-response (SCR) items pose similar questions as multiple-choice items and provide a reliable and valid basis for extrapolating about students’ approaches to problems. These items reduce the concern about guessing that accompanies multiple-choice items.

Scoring Extended- and Short Constructed-Response Items

Extended and short constructed-response items are evaluated according to an established scoring scale, called a rubric, developed from a combination of expert expectations and a sample of actual student responses. Such rubrics must be particularized by expected work and further developed by examples of student work in developing a guide for scorers.

Excerpt from *Illinois Learning Standards*^4^

The *Illinois Learning Standards for Mathematics* were developed by Illinois teachers for Illinois schools. These goals, standards and benchmarks are an outgrowth of the 1985 Illinois State Goals for Learning influenced by the latest thinking in school mathematics. This includes the National Council of Teachers of Mathematics; *Curriculum and Evaluation Standards for School Mathematics*; ideas underlying recent local and national curriculum projects; results of state, national, and international assessment findings; and the work and experiences of Illinois school districts and teachers.

Mathematics is a language we use to identify, describe and investigate the patterns and challenges of everyday living. It helps us to understand the events that have occurred and to predict and prepare for events to come so that we can more fully understand our world and more successfully live in it.

Mathematics encompasses arithmetic, measurement, algebra, geometry, trigonometry, statistics, probability and other fields. It deals with numbers, quantities, shapes and data, as well as numerical relationships and operations. Confronting, understanding and solving problems is at the heart of mathematics. Mathematics is much more than a collection of concepts and skills; it is a way of approaching new challenges through investigating, reasoning, visualizing and problem solving with the goal of communicating the relationships observed and problems solved to others.

All students in Illinois schools need to have the opportunity to engage in learning experiences that foster mastery of these goals and standards. Knowledge of mathematics and the ability to apply math skills to solve problems can be an empowering force for all students—both while in school and later in their lives. Students reaching these goals and standards will have an understanding of how numbers are used and represented. They will be able to use basic operations (addition, subtraction, multiplication, division) to both solve everyday problems and confront more involved calculations in algebraic and statistical settings. They will be able to read, write, visualize and talk about ways in which mathematical problems can be solved in both theoretical and practical situations. They will be able to communicate relationships in geometric and statistical settings through drawings and graphs. These skills will provide all Illinois students with a solid foundation for success in the workplace, a basis for continued learning about mathematics, and a foundation for confronting problem situations arising throughout their lives.

APPLICATIONS OF LEARNING

Through Applications of Learning, students demonstrate and deepen their understanding of basic knowledge and skills. These applied learning skills cross academic disciplines and reinforce the important learning of the disciplines. The ability to use these skills will greatly influence students’ success in school, in the workplace and in the community.

SOLVING PROBLEMS

Recognize and investigate problems; formulate and propose solutions supported by reason and evidence. The solving of problems is at the heart of “doing mathematics.” When people are called on to apply their knowledge of numbers, symbols, operations, measurement, algebraic approaches, geometric concepts and relationships, and data analysis, mathematics’ power emerges. Sometimes problems appear well structured, almost like textbook exercises, and simply require the application of an algorithm or the interpretation of a relationship. Other times, particularly in occupational settings, the problems are non-routine and require some imagination and careful reasoning to solve. Students must have experience with a wide variety of problem-solving methods and opportunities for solving a wide range of problems. The ability to link the problem-solving methods learned in mathematics with a knowledge of objects and concepts from other academic areas is a fundamental survival skill for life.

COMMUNICATING
Express and interpret information and ideas.
Everyone must be able to read and write technical material to be competitive in the modern workplace. Mathematics provides students with opportunities to grow in the ability to read, write and talk about situations involving numbers, variables, equations, figures and graphs. The ability to shift between verbal, graphical, numerical and symbolic modes of representing a problem helps people formulate, understand, solve and communicate technical information. Students must have opportunities in mathematics classes to confront problems requiring them to translate between representations, both within mathematics and between mathematics and other areas; to communicate findings both orally and in writing; and to develop displays illustrating the relationships they have observed or constructed.

USING TECHNOLOGY
Use appropriate instruments, electronic equipment, computers and networks to access information, process ideas and communicate results.
Technology provides a means to carry out operations with speed and accuracy; to display, store and retrieve information and results; and to explore and extend knowledge. The technology of paper and pencil is appropriate in many mathematical situations. In many other situations, calculators or computers are required to find answers or create images. Specialized technology may be required to make measurements, determine results or create images. Students must be able to use the technology of calculators and computers including spreadsheets, dynamical geometry systems, computer algebra systems, and data analysis and graphing software to represent information, form conjectures, solve problems and communicate results.

WORKING ON TEAMS
Learn and contribute productively as individuals and as members of groups.
The use of mathematics outside the classroom requires sharing expertise as well as applying individual knowledge and skills. Working in teams allows students to share ideas, to develop and coordinate group approaches to problems, and to share and learn from each other in communicating findings. Students must have opportunities to develop the skills and processes provided by team problem-solving experiences to be prepared to function as members of society and productive participants in the workforce.

MAKING CONNECTIONS
Recognize and apply connections of important information and ideas within and among learning areas.
Mathematics is used extensively in business; the life, natural and physical sciences; the social sciences; and in the fine arts. Medicine, architecture, engineering, the industrial arts and a multitude of occupations are also dependent on mathematics. Mathematics offers necessary tools and ways of thinking to unite the concepts, relationships and procedures common to these areas. Mathematics provides a language for expressing ideas across disciplines, while, at the same time, providing connections linking number and operation, measurement, geometry, data and algebra within mathematics itself. Students must have experiences which require them to make such connections among mathematics and other disciplines. They will then see the power and utility that mathematics brings to expressing, understanding and solving problems in diverse settings beyond the classroom.
STATE GOAL 6: Demonstrate and apply a knowledge and sense of numbers, including numeration and operations (addition, subtraction, multiplication, division), patterns, ratios and proportions.

Why This Goal Is Important: Numbers and operations on numbers play fundamental roles in helping us make sense of the world around us. Operations such as addition, subtraction, multiplication and division, as well as the ability to find powers and roots, extend the notion of numbers to create tools to model situations and solve problems in our everyday lives. Discussing and solving problems related to budgets, comparing prices on merchandise, understanding the nature of interest charges, measuring fuel consumption and calculating the trajectory for space travel would all be impossible without a sense of numbers and numerical operations. All people must develop this sense of numbers and operations and be able to use it to solve problems using mental computation, paper–and–pencil algorithms, calculators and computers.

STANDARD 6A
Demonstrate knowledge and use of numbers and their representations in a broad range of theoretical and practical settings.

STANDARD 6B
Investigate, represent and solve problems using number facts, operations (addition, subtraction, multiplication, division) and their properties, algorithms and relationships.

STANDARD 6C
Compute and estimate using mental mathematics, paper–and–pencil methods, calculators and computers.

STANDARD 6D
Solve problems using comparison of quantities, ratios, proportions and percents.

STATE GOAL 7: Estimate, make and use measurements of objects, quantities and relationships and determine acceptable levels of accuracy.

Why This Goal Is Important: Measurement provides a way to answer questions about “how many,” “how much” and “how far.” It is an indispensable component of business, manufacturing, art, medicine and many other aspects of daily life. We describe the sizes, capacities and values of many things, from the large distances involved in space travel, to the very small quantities in computer design and microbiology, to the varying values of currencies in international monetary exchange. All people must be able to choose an appropriate level of accuracy for a measurement; to select what measuring instruments to use and to correctly determine the measures of objects, space and time. These activities require people to be able to use standard instruments including rulers, volume and capacity measures, timers and emerging measurement technologies found in the home and workplace.

STANDARD 7A
Measure and compare quantities using appropriate units, instruments and methods.

STANDARD 7B
Estimate measurements and determine acceptable levels of accuracy.

STANDARD 7C
Select and use appropriate technology, instruments and formulas to solve problems, interpret results and communicate findings.
STATE GOAL 8: Use algebraic and analytical methods to identify and describe patterns and relationships in data, solve problems and predict results.

Why This Goal Is Important: Algebra unites patterns and quantities in patterns with the means of describing change through the use of variables and functions. Its concepts and analytical methods allow people to consider general solutions to problems with common characteristics and develop related formulas. Algebra provides verbal, symbolic and graphical formats for discussing and representing settings as diverse as the pricing patterns of merchandise in a store, the behavior of a car as it accelerates or slows down, the changes in two chemicals as they react with one another, or the type of variation existing in a comparison of two factors in the economy. All people must be able to use algebraic methods to construct and examine tables of values; to interpret the relationships expressed by patterns in these tables; to relate change and variation in graphs and formulas; to reason about changes in quantities and the relationships involved in changes; and to find solutions to everyday problems using algebra’s symbolic manipulation and formulas.

STANDARD 8A
Describe numerical relationships using variables and patterns.

STANDARD 8B
Interpret and describe numerical relationships using tables, graphs and symbols.

STANDARD 8C
Solve problems using systems of numbers and their properties.

STANDARD 8D
Use algebraic concepts and procedures to represent and solve problems.

STATE GOAL 9: Use geometric methods to analyze, categorize and draw conclusions about points, lines, planes and space.

Why This Goal Is Important: Geometry provides important methods for reasoning and solving problems with points, lines, planes and space. The word “geometry” comes from Greek words meaning “measurement of the Earth.” While we use modern technology and employ a wider variety of mathematical tools today, we still study geometry to understand the shapes and dimensions of our world. The applications of geometry are widespread in construction, engineering, architecture, mapmaking and art. Historically, geometry is a way to develop skill in forming convincing arguments and proofs. This goal of developing a means of argument and validation remains an important part of our reasons for studying geometry today.

STANDARD 9A
Demonstrate and apply geometric concepts involving points, lines, planes and space.

STANDARD 9B
Identify, describe, classify and compare relationships using points, lines, planes and solids.

STANDARD 9C
Construct convincing arguments and proofs to solve problems.

STANDARD 9D
Use trigonometric ratios and circular functions to solve problems.
STATE GOAL 10: Collect, organize and analyze data using statistical methods; predict results; and interpret uncertainty using concepts of probability.

Why This Goal Is Important: The ability to understand and interpret data (e.g., opinion polls, stock prices, tax rates, crime statistics, scientific studies, weather reports) grows more important each day. Students must be able to organize data, make sense of variables and patterns, and judge the logical reasonableness of any claims and interpretations made. Even very young students can count objects and communicate their findings with charts and graphs. Students of all ages can collect, display and interpret data to answer specific questions. They also must construct and analyze arguments that involve data and its interpretation. All students need to understand and apply the role probability plays in data collection and decision making. Data analysis and use are important abilities necessary for all careers.

STANDARD 10A
Organize, describe and make predictions from existing data.

STANDARD 10B
Formulate questions, design data collection methods, gather and analyze data and communicate findings.

STANDARD 10C
Determine, describe and apply the probabilities of events.
Mathematics Content Category Table

In grade 3, calculator use is not allowed during any part of the mathematics assessment. In grades 4 through 8, calculator use is allowed during any part of the mathematics assessment.

<table>
<thead>
<tr>
<th>Grade</th>
<th>Calculators Not Allowed</th>
<th>Calculators Allowed</th>
<th>Calculators Allowed</th>
<th>Calculators Allowed</th>
<th>Calculators Allowed</th>
<th>Calculators Allowed</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>35%</td>
<td>35%</td>
<td>30%</td>
<td>25%</td>
<td>25%</td>
<td>20%</td>
</tr>
<tr>
<td>4</td>
<td>15%</td>
<td>15%</td>
<td>10%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>5</td>
<td>20%</td>
<td>20%</td>
<td>15%</td>
<td>15%</td>
<td>15%</td>
<td>10%</td>
</tr>
<tr>
<td>6</td>
<td>0%</td>
<td>0%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>7</td>
<td>20%</td>
<td>20%</td>
<td>15%</td>
<td>15%</td>
<td>15%</td>
<td>15%</td>
</tr>
<tr>
<td>8</td>
<td>10%</td>
<td>10%</td>
<td>20%</td>
<td>25%</td>
<td>25%</td>
<td>30%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>State Goal 7 – Measurement</th>
<th>20%</th>
<th>20%</th>
<th>15%</th>
<th>15%</th>
<th>15%</th>
<th>15%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standards 7A, 7B, 7C</td>
<td>20%</td>
<td>20%</td>
<td>15%</td>
<td>15%</td>
<td>15%</td>
<td>15%</td>
</tr>
<tr>
<td>Units, Tools, Estimation, and Applications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>State Goal 8 – Algebra</th>
<th>10%</th>
<th>10%</th>
<th>20%</th>
<th>25%</th>
<th>25%</th>
<th>30%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard 8A</td>
<td>5%</td>
<td>5%</td>
<td>8%</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>Representations, Patterns, and Expressions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard 8B</td>
<td>0%</td>
<td>2%</td>
<td>5%</td>
<td>7%</td>
<td>7%</td>
<td>10%</td>
</tr>
<tr>
<td>Connections Using Tables, Graphs, and Symbols</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standards 8C, 8D</td>
<td>5%</td>
<td>3%</td>
<td>7%</td>
<td>8%</td>
<td>8%</td>
<td>10%</td>
</tr>
<tr>
<td>Writing, Interpreting, and Solving Equations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>State Goal 9 – Geometry</th>
<th>20%</th>
<th>20%</th>
<th>20%</th>
<th>20%</th>
<th>20%</th>
<th>20%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard 9A</td>
<td>15%</td>
<td>15%</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>Properties of Single Figures and Coordinate Geometry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard 9B</td>
<td>5%</td>
<td>5%</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>Relationships Between and Among Multiple Figures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard 9C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Justifications of Conjectures and Conclusions</td>
<td>This standard is not assessed in isolation. Rather, its essence is assessed indirectly through problems that require this type of thinking.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard 9D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trigonometry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>State Goal 10 – Data Analysis, Statistics, and Probability</th>
<th>15%</th>
<th>15%</th>
<th>15%</th>
<th>15%</th>
<th>15%</th>
<th>15%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standards 10A, 10B</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
<td>8%</td>
<td>8%</td>
</tr>
<tr>
<td>Data Analysis and Statistics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard 10C</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
<td>7%</td>
<td>7%</td>
</tr>
<tr>
<td>Probability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Total | 100% | 100% | 100% | 100% | 100% | 100% |