Math 232 Fall 2002

Write $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ and $\mathbf{0} = \langle 0, 0, 0 \rangle$. Define $\mathbf{v} \pm \mathbf{w} = \langle v_1 \pm w_1, v_2 \pm w_2, v_3 \pm w_3 \rangle$ and $t\mathbf{v} = \langle tv_1, tv_2, tv_3 \rangle$. The dot product is $\mathbf{v} \cdot \mathbf{w} = v_1w_1 + v_2w_2 + v_3w_3$.

The length is $|\mathbf{v}| = \sqrt{\mathbf{v} \cdot \mathbf{v}}$. With $t = 1/|\mathbf{v}|$, $\mathbf{u} = t\mathbf{v}$ has length 1.

Let \mathbf{v} and \mathbf{w} span two sides of a triangle. Represent the third side by $\mathbf{v} \times \mathbf{w}$. The angle between \mathbf{v} and \mathbf{w} be given by θ. According to the Law of Cosines, it must be that

$$|\mathbf{w} - \mathbf{v}|^2 = |\mathbf{w}|^2 + |\mathbf{v}|^2 - 2|\mathbf{v}||\mathbf{w}||\cos \theta|.$$

In terms of the angle θ between \mathbf{v} and \mathbf{w} this is $|\mathbf{v} \times \mathbf{w}| = |\mathbf{v}||\mathbf{w}||\sin \theta|.$

Application:

Given two points P and Q let the vector \mathbf{p} and the vector \mathbf{q} go from the origin to P and Q respectively. Let $\mathbf{v} = \mathbf{q} - \mathbf{p}$. The parametric curve $\mathbf{r}'(t) = \mathbf{p} + t\mathbf{v}$ traces a straight line, which passes through P when $t = 0$ and Q when $t = 1$. The midpoint of the straight line segment between P and Q is $\mathbf{r}'(\frac{1}{2}) = \mathbf{p} + \frac{1}{2}\mathbf{v} = \frac{1}{2}(\mathbf{p} + \mathbf{q})$. If there is a mass m_p at P and a mass m_Q at Q, then the center of mass is $m_p \mathbf{p} + m_Q \mathbf{q}$.

Application:

Let $P = (p_1, p_2, p_3)$ and $Q = (q_1, q_2, q_3)$. Connect PQ so that $\mathbf{v} = \langle q_1 - p_1, q_2 - p_2, q_3 - p_3 \rangle$.

The distance between P and Q is given by

$$|\mathbf{v}| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{(q_1 - p_1)^2 + (q_2 - p_2)^2 + (q_3 - p_3)^2}.$$

All points (x, y, z) a distance $r > 0$ from P satisfy $(x - p_1)^2 + (y - p_2)^2 + (z - p_3)^2 = r^2$. This is the equation of a sphere of radius r with center at P.

Application:

Let θ be the angle between $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ and $\mathbf{w} = \langle w_1, w_2, w_3 \rangle$. It must be that

$$\theta = \cos^{-1}\left(\frac{\mathbf{v} \cdot \mathbf{w}}{|\mathbf{v}||\mathbf{w}|}\right).$$

In particular, $\theta = \pi / 2$ if and only if $\mathbf{v} \cdot \mathbf{w} = 0$. The vectors \mathbf{v} and \mathbf{w} are perpendicular if and only if $\mathbf{v} \cdot \mathbf{w} = 0$.

Application:

Let $P = (p_1, p_2, p_3)$ be some given point in a plane. Let $Q = (x, y, z)$ be an arbitrary point in the same plane. The vectors $\mathbf{v} = \langle x - p_1, y - p_2, z - p_3 \rangle$ are always in the plane. Let $\mathbf{n} = \mathbf{0}$ be a fixed vector such that $\mathbf{n} \cdot \mathbf{v} = 0$. Any such \mathbf{n} is a normal vector to the plane. If $\mathbf{n} = \langle A, B, C \rangle$, then $\mathbf{n} \cdot \mathbf{v} = 0$ is equivalent to $Ax + By + Cz = Ap_1 + Bp_2 + Cp_3 = D$.

Application:

Let θ be the angle between \mathbf{v} and \mathbf{w}. The quantity $|\mathbf{w}| \cos \theta$ is the size of the adjacent side, in
the direction of \mathbf{V}, of a triangle with hypotenuse along \mathbf{W}. This value is $\mathbf{U} \cdot \mathbf{W}$ where \mathbf{U} is a unit vector in the direction given by \mathbf{V}. The vector $(\mathbf{U} \cdot \mathbf{W})\mathbf{U}$ is the projection of \mathbf{W} onto \mathbf{V}.

Application:
Let $\mathbf{n} = \langle A, B, C \rangle$ be a normal vector to a plane $Ax + By + Cz = D$ with \mathbf{p} a vector pointing to a point (p_1, p_2, p_3) in the plane. Let \mathbf{U} be the unit vector in the direction given by \mathbf{n}. The triangle created by \mathbf{p} as the hypotenuse and \mathbf{U} along one of the short sides has $(\mathbf{p} \cdot \mathbf{U})\mathbf{U}$ pointing to a point in the plane. All other points in the plane must be further away from the origin. It follows that the distance from the plane to the origin is $|\mathbf{p} \cdot \mathbf{U}| = D / \sqrt{A^2 + B^2 + C^2}$. The distance from the plane to a point (q_1, q_2, q_3) pointed to by \mathbf{q} is the same formula with $\mathbf{p} - \mathbf{q}$ replacing \mathbf{p} so $D = A(p_1 - q_1) + B(p_2 - q_2) + C(p_3 - q_3)$.

Application:
Since $\mathbf{V} = t\mathbf{W}$ if and only if $\mathbf{V} \times \mathbf{W} = \mathbf{0}$, it follows that two vectors are parallel if and only if their cross product vanishes.

Application:
The area of the parallelogram spanned by \mathbf{V} and \mathbf{W} is given by $|\mathbf{V} \times \mathbf{W}|$.

Application:
The area of a triangle with vertices $P = (p_1, p_2, p_3)$, $Q = (q_1, q_2, q_3)$, and $R = (r_1, r_2, r_3)$ is $|\mathbf{V} \times \mathbf{W}|/2$, where $\mathbf{V} = \langle q_1 - p_1, q_2 - p_2, q_3 - p_3 \rangle$ and $\mathbf{W} = \langle r_1 - p_1, r_2 - p_2, r_3 - p_3 \rangle$ represents two of its sides.

Application:
The parallelepiped spanned by \mathbf{U}, \mathbf{V} and \mathbf{W} has volume $|\mathbf{U} \cdot (\mathbf{V} \times \mathbf{W})|$

Application:
Visualize the vectors perpendicular to the line $\mathbf{p} + t\mathbf{V}$. Consider the opposite side in a right angle triangle with hypotenuse \mathbf{p} and adjacent side $t\mathbf{V}$ for some t. With θ the angle between \mathbf{p} and \mathbf{V}, the length of the opposite side is $|\mathbf{p}| \sin \theta$. This value is equal to $|\mathbf{U} \times \mathbf{p}|$ where \mathbf{U} is a unit vector in the direction given by \mathbf{V}. It follows that the distance from the line $\mathbf{p} + t\mathbf{V}$ to the origin is $|\mathbf{U} \times \mathbf{p}|$. The distance from the line to some arbitrary point \mathbf{q} is $|\mathbf{U} \times (\mathbf{p} - \mathbf{q})|$

Application:
Consider the two lines $\mathbf{p} + t\mathbf{V}$ and $\mathbf{q} + s\mathbf{W}$. Visualize the triangle with hypotenuse $\mathbf{p} - \mathbf{q}$ and adjacent side the perpendicular segment between the two lines. If the lines are parallel, then the distance between the two lines equals the distance from \mathbf{q} to the first line. If the lines are not parallel, then the vector $\mathbf{V} \times \mathbf{W} = \mathbf{U}$ is perpendicular to both lines. Let θ be the angle between $\mathbf{p} - \mathbf{q}$ and $\mathbf{V} \times \mathbf{W}$. The length of the opposite side of the triangle is $|\mathbf{p} - \mathbf{q}| \sin \theta$. Let \mathbf{U} be a unit vector in the direction given by $\mathbf{V} \times \mathbf{W}$. The distance between the two lines is $|\mathbf{U} \times (\mathbf{p} - \mathbf{q})|$

Application:
Suppose a line of direction \mathbf{V} bounces of a surface with normal \mathbf{n}. The reflected line’s direction \mathbf{W} is given by $\mathbf{W} = \mathbf{V} - 2(\mathbf{V} \cdot \mathbf{n})\mathbf{n}$.