1. (10 pts; p 137 #18) For the function \(f(x) = x^3 \), find \(f'(x) \) using the definition on page 128 of the text (show your work). Then find an equation of the tangent line to the graph at the point \((-2, -8)\), at the point \((0, 0)\), and at the point \((4, 64)\).

\[
f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+h)^3 - x^3}{h} = \lim_{h \to 0} \frac{x^3 + 3x^2h + 3xh^2 + h^3 - x^3}{h} = \lim_{h \to 0} \frac{3x^2h + 3xh^2 + h^3}{h} = 3x^2 + 3x(0) + (0)^2 = 3x^2
\]

Remember that the derivative (at a point) gives you the slope of the tangent line (at that point).

\[
f'(-2) = 3(-2)^2 = 12 \text{ so the tangent line at } (-2, -8) \text{ is } y = 12(x + 2) - 8
\]

\[
f'(0) = 3(0)^2 = 0 \text{ so the tangent line at } (0, 0) \text{ is } y = 0
\]

\[
f'(4) = 3(4)^2 = 48 \text{ so the tangent line at } (4, 64) \text{ is } y = 48(x - 4) + 64
\]

2. (10 pts; p 137 #20) For the function \(f(x) = \frac{2}{x} \), find \(f'(x) \) using the definition (show your work). Then find an equation of the tangent line to the graph at the point \((-1, -2)\), at the point \((2, 1)\), and at the point \((10, .2)\).

\[
f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{1}{h} \left(\frac{2}{x+h} - \frac{2}{x} \right) = \lim_{h \to 0} \frac{1}{h} \left(\frac{2(x) - (x+h)(2)}{(x+h)(x)} \right)
\]

\[
f'(-1) = \frac{-2}{(-1)^2} = -2 = -2 \text{ so the tangent line at } (-1, -2) \text{ is } y = -2(x + 1) - 2
\]

\[
f'(2) = \frac{-2}{2^2} = -\frac{1}{2} \text{ so the tangent line at } (2, 1) \text{ is } y = -\frac{1}{2}(x - 2) + 1
\]

\[
f'(10) = \frac{-2}{10^2} = -\frac{2}{100} = -0.02 \text{ so the tangent line at } (10, .2) \text{ is } y = -0.02(x - 10) + .2
\]