1. (15 pts) Define \(f : \mathbb{Z}_8 \to \mathbb{Z}_{12} \) by \(f([x]_8) = [3x]_{12} \), for all \([x]_8 \in \mathbb{Z}_8\).

 (a) Show that \(f \) is a well-defined function.

 \textit{Recall: you must show that if } x_1 \equiv x_2 \pmod{8}, \text{ then } 3x_1 \equiv 3x_2 \pmod{12}.

 (b) Find the image \(f(\mathbb{Z}_8) \) and the set of equivalence classes \(\mathbb{Z}_8/f \) defined by \(f \), and exhibit the one-to-one correspondence between these sets.

2. (25 pts) Let \(\sigma = (1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9) \) and \(\tau = (1 \ 5 \ 4 \ 7 \ 2 \ 6 \ 8 \ 9 \ 3) \).

 (a) Write each of \(\sigma \), \(\tau \), \(\sigma \tau \), \(\tau \sigma \), and \(\sigma \tau \sigma^{-1} \) as a product of disjoint cycles.

 (b) Find the order of each of \(\sigma \), \(\tau \), \(\sigma \tau \), \(\tau \sigma \), and \(\sigma \tau \sigma^{-1} \).

 \textit{Recall: the order of a permutation } \sigma \textit{ is the smallest positive exponent } m \textit{ for which } \sigma^m \textit{ is equal to the identity.}

 (c) Determine whether each of \(\sigma \), \(\tau \), \(\sigma \tau \), \(\tau \sigma \), and \(\sigma \tau \sigma^{-1} \) is an even permutation or an odd permutation.

3. (20 pts) Let \(f : S \to T \) and \(g : T \to U \) be functions.

 (a) State these definitions: \(f \) is \textbf{one-to-one}; \(f \) is \textbf{onto}.

 (b) Prove that if \(gf \) is a one-to-one function, then so is \(f \).

 (c) Prove that if \(gf \) is an onto function, then so is \(g \).

4. (20 pts) For integers \(m, n, b \) with \(n > 1 \), define \(f : \mathbb{Z}_n \to \mathbb{Z}_n \) by \(f([x]_n) = [mx + b]_n \).

 You may assume that \(f \) is a well-defined function.

 Prove that \(f \) is a one-to-one correspondence if and only if \(\gcd(m,n) = 1 \). Then find the inverse function \(f^{-1} \), assuming that \(\gcd(m,n) = 1 \).

5. (10 pts) Let \(S \) be the set of all \(n \times n \) matrices with real entries. For \(A, B \in S \), define \(A \sim B \) if there exists an invertible matrix \(P \) such that \(B = PAP^{-1} \). Prove that \(\sim \) is an equivalence relation.

6. (10 pts) Let \(\sigma \in S_n \) have order \(m \). Prove that if \(k \) is any integer, then \(\sigma^k = (1) \) if and only if \(m \mid k \).

 \textit{The rules:} You must give a direct proof that does not use Proposition 2.3.7 from the text, which states that \(\sigma^i = \sigma^j \) if and only if \(i \equiv j \pmod{m} \).