1. (a) State the definition of a **group**.

 (b) State the definition of an **abelian** group.

 (c) Give an example of a finite group that is not abelian. Explain your answer.

2. (a) For each \(\sigma \in S_3 \), find \(\langle \sigma \rangle \), the cyclic subgroup generated by \(\sigma \).

 (b) Find the order of each element of the group \(\mathbb{Z}_4 \times \mathbb{Z}_4^\times \).

3. (a) What are the possibilities for the order of an element of \(\mathbb{Z}_{11}^\times \)? Explain your answer.

 (b) Show that \(\mathbb{Z}_{11}^\times \) is a cyclic group.

4. (a) In the group \(G = GL_2(\mathbb{R}) \) of invertible \(2 \times 2 \) matrices with real entries, show that

 \[
 H = \left\{ \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \in GL_2(\mathbb{R}) \mid a_{11} = 1, a_{21} = 0, a_{22} = 1 \right\}
 \]

 is a subgroup of \(G \).

 (b) Show that \(H \) is isomorphic to the group \(\mathbb{R} \) of all real numbers, under addition.

5. **Choose Part A OR Part B.**

 Part A. Prove Proposition 3.4.5: Assume that \(m \) and \(n \) are positive integers such that \(\gcd(m, n) = 1 \). For \(k = mn \), define \(\phi : \mathbb{Z}_k \to \mathbb{Z}_m \times \mathbb{Z}_n \) by \(\phi([x]_k) = ([x]_m, [x]_n) \), for all \([x]_k \in \mathbb{Z}_k \). Prove that \(\phi \) is a well-defined function, and that \(\phi \) is an isomorphism.

 Part B. State and prove Lagrange’s theorem.

 In your proof you may assume Lemma 3.2.9, which states that if \(H \) is a subgroup of a group \(G \), and for \(a, b \in G \) we define \(a \sim b \) if \(ab^{-1} \in H \), then \(\sim \) is an equivalence relation on \(G \).