4.3 #1: In Example 4.3.3 use a direct calculation to verify that the subfield fixed by \(\langle \alpha^3 \beta \rangle \) is \(\mathbb{Q}(\sqrt[4]{2} - i\sqrt[4]{2}) \).

4.3 #2: In Example 4.3.3 determine which subfields are conjugate, and in each case find an automorphism under which the subfields are conjugate.

4.4 #3: Find the Galois group of \(x^5 - 1 \) over \(\mathbb{Q} \).

4.4 #4: Find the Galois group of \(x^9 - 1 \) over \(\mathbb{Q} \).

4.4 #7: Let \(H \) be a subgroup of \(S_p \), where \(p \) is prime. Show that if \(H \) contains a transposition and a cycle of length \(p \), then \(H = S_p \).

4.4 #8: Prove that if \(f(x) \in \mathbb{Q}[x] \) is irreducible of prime degree \(p \) and has exactly two non-real roots in \(\mathbb{C} \), then the Galois group of \(f(x) \) over \(\mathbb{Q} \) is \(S_p \).

The remaining problems are worth 10 points each, instead of the usual 5 points.

IX #1. Let the field \(F \) be a finite, normal, separable extension of the field \(K \). Suppose that the Galois group of \(F \) over \(K \) is cyclic of order 50. Find how many distinct fields \(E \) there are with \(K \subseteq E \subseteq F \), and how many of these are normal extensions of \(K \).

IX #2. Find the Galois group of \(x^3 - 7 \) over \(\mathbb{Q} \).

IX #3. Let \(u = \sqrt{2} + \sqrt{2} \). Let \(f(x) \) be the minimal polynomial of \(\alpha \) over \(\mathbb{Q} \), and let \(F \) be the splitting field for \(f(x) \) over \(\mathbb{Q} \). Prove that \(\text{Gal}(F/\mathbb{Q}) \) is cyclic of order 4. Find all fields \(E \) with \(\mathbb{Q} \subseteq E \subseteq F \).

IX #4. Show that the Galois group of \(x^5 - 2 \) over \(\mathbb{Q} \) is \(F_{20} \). (This exercise is in Dummit and Foote.)

IX #5. This exercise (from Dummit and Foote) shows that \(\text{Gal}(\mathbb{R}/\mathbb{Q}) = \{1_{\mathbb{R}}\} \).

(a) Let \(\alpha \in \text{Gal}(\mathbb{R}, \mathbb{Q}) \). Show that \(\alpha \) maps squares to squares, and maps positive reals to positive reals. Conclude that \(a < b \) implies \(\alpha(a) < \alpha(b) \) for all \(a, b \in \mathbb{R} \).

(b) Prove that \(-\frac{1}{m} < a - b < \frac{1}{m} \) implies that \(-\frac{1}{m} < \alpha(a) - \alpha(b) < \frac{1}{m} \) for all \(a, b \in \mathbb{R} \). Conclude that \(\alpha \) is a continuous function on \(\mathbb{R} \).

(c) Prove that any continuous function from \(\mathbb{R} \) to \(\mathbb{R} \) that is the identity on \(\mathbb{Q} \) is the identity mapping.