Introductory Lectures on Rings and Modules, by John A. Beachy

Errata

page 11, line -15 and line -9 For \(r_i \in R \) read \(r_i \in R_i \)

page 18, line -8 For \(R[s] \) read \(R[x] \)

page 23, lines 5 and 6 For \(R \) read \(R_i \)

page 31, line -5 and line -4 For \(R = \mathbb{Z}[x]/(x^4 - 1) \) read \(R = \mathbb{Q}[x]/(x^4 - 1) \)

page 32, line -5 For \(\frac{1}{3}(1 + \omega x + \omega^2 x^2) = \frac{1 - \omega}{3}(1 - x) \cdot \frac{1 + 2\omega}{3}(\omega^2 - x) \).

read \(\frac{1}{3}(1 + \omega x + \omega^2 x^2) = \frac{1 - \omega}{3}(1 - x) \cdot \frac{(-1 - 2\omega)}{3}(\omega - x) \).

page 36, line 12 For \(\theta : R \to \overline{R}[x] \) read \(\theta : R \to \overline{R} \)

page 43, line -6 For (a) Show that read (b) Show that

page 85, line 10 For \(\ker(g) \) is a direct summand read \(\ker(f) \) is a direct summand

page 87, line 3 For projective it is read projective if it is

page 91, line -16 For \(f(M) \) is a direct summand read \(f(Q) \) is a direct summand

page 95, line -13 For quotient field of \(R \) read quotient field of \(D \).

page 114, line -5 For \(\delta(I) \subseteq I \), read \(\delta(I) \subseteq I \), which implies that \(\delta(I) \subseteq I \), and

page 132, line -16 For \(f_\alpha f_\beta = f_\gamma \), read \(f_\beta f_\alpha = f_\gamma \).

page 132, line -4 For \(f_\alpha f_\beta = f_\gamma \). read where \(k = \phi(x) \).

page 146, Exercise 2 For \(\left[\begin{array}{cc} p\mathbb{Z} & 0 \\ \mathbb{Z} & 0 \end{array} \right] \) or \(\left[\begin{array}{cc} \mathbb{Z} & 0 \\ \mathbb{Z} & q\mathbb{Z} \end{array} \right] \), for primes \(p, q \in \mathbb{Z} \).

read \(\left[\begin{array}{cc} P & 0 \\ \mathbb{Z} & 0 \end{array} \right] \) or \(\left[\begin{array}{cc} Z & 0 \\ Z & Q \end{array} \right] \), for prime ideals \(P, Q \) of \(\mathbb{Z} \).

Last revision: 1/17/2000