CHAPTER 2: MODULES

Review Problems

1. Let M be a left R-module. Show that M is finitely generated if there exists a submodule $N \subseteq M$ such that N and M/N are both finitely generated.

2. Let I, J be ideals of the ring R. Show that R/I and R/J are isomorphic as left R-modules if and only if $I = J$.

3. Show that if $x^2 = 0$ implies $x = 0$, for all x in the ring R, then all idempotent elements of R are central.

4. Let S be a simple left R-module, and let A be a minimal left ideal of R. Show that if $A \cdot S \neq (0)$, then A and S are isomorphic as left R-modules.

5. Let R be a commutative ring with a unique maximal ideal I, and let M be a nonzero finitely generated R-module. Show that $\text{Hom}_R(M, R/I) \neq 0$.

6. Let R be a ring, and let M be a left R-module with submodules N and K. Show that if N and K are Artinian, then so is $N + K$.

7. Compute the socle of the \mathbb{Z}-module \mathbb{Z}_n.

8. Let R be a ring, and let M be a left R-module that has a minimal submodule S such that $M/S \cong S$. Prove that either S is a direct summand of M, in which case $M \cong S \oplus S$, or else S is the only proper nontrivial submodule of M.

9. Let A and B be finitely generated abelian groups. Prove that if $A \oplus A \cong B \oplus B$, then $A \cong B$.

10. Let M be a finitely generated projective module over a principal ideal domain D. Prove that M is a free D-module.

11. Let R be a commutative ring, and let M and N be R-modules. Show that $M \otimes_R N$ is isomorphic to $N \otimes_R M$.

12. Let A be a nonzero injective \mathbb{Z}-module. Prove that A cannot be finitely generated.