MATH 420 Exam 1 practice.
This is a bit long, but it will prepare you well, and let you know what to expect.

Short answer

1. Divisibility and gcd’s.

(a) Define: a divides b.
 For \(a, b \in \mathbb{Z} \), \(a \mid b \) if there exists \(d \in \mathbb{Z} \) such that \(b = ad \).
 That is the functional definition (useful) - conceptual: a divides b if b is a multiple of a.

(b) Explain why, if \(a, b \geq 0 \) and \(a \mid b \) and \(b \mid a \), then \(a = b \). What can you say if we remove the restriction that \(a \) and \(b \) can be positive or negative?
 If \(a \mid b \) and \(b \mid a \), then there exist \(h, k \in \mathbb{Z} \) such that \(b = ah \) and \(a = bk \). By substitution we see that \(b = bkh \) and, thus by cancellation, \(1 = hk \), since \(a \) and \(b \) are positive, \(h \) and \(k \) must be positive, and thus \(h = k = 1 \), so \(a = b \).

(c) State the division algorithm.
 Given \(a, b \in \mathbb{Z} \), \(b > 0 \), there exist unique \(q, r \in \mathbb{Z} \) such that \(a = bq + r \), where \(0 \leq r < b \).

(d) What is the remainder when -17 is divided by 4?
 \[-17 = 4(-5) + 3 \]
 So the remainder is \(r = 3 \).

(e) Define: \(d \) is the greatest common divisor of \(a \) and \(b \).
 \(d \) is the greatest common divisor of \(a \) and \(b \) if
 i. \(d \) is a common divisor of \(a \) and \(b \),
 ii. if \(c \) is any common divisor of \(a \) and \(b \), then \(d \mid c \).

(f) Use the Euclidean algorithm to find \(\gcd(150, 84) \), and then express the gcd as a linear combination of 150 and 84. Do NOT use matrix method for this problem (you can use it later if you need to solve such a problem.)
 You should have obtained a gcd of 6 after 4 steps (5 if you count the step where you get 0 as the remainder.)

 After working it backwards, you should get \(\gcd(150, 84) = 6 = 84 \times 9 - 150 \times 5 \).

(g) Define: for \(a, b \in \mathbb{Z} \), \(a \) and \(b \) are relatively prime.
 \(a \) and \(b \) are relatively prime if \(\gcd(a, b) = 1 \).

2. Subsets of integers.

(a) for \(a \in \mathbb{Z} \), define \(a\mathbb{Z} \).
 \(a\mathbb{Z} = \{ax : x \in \mathbb{Z}\} \) (the set of all multiples of \(a \).

(b) Prove: \(a\mathbb{Z} \subseteq b\mathbb{Z} \) if and only if \(a \mid b \).
 This isn’t true. try examples, such as \(a = 2 \), \(b = 6 \)
 What is true?
 \(b\mathbb{Z} \subseteq a\mathbb{Z} \) if and only if \(a \mid b \).
 Proof: Two directions here:
 i. \(\Rightarrow \) If \(b\mathbb{Z} \subseteq a\mathbb{Z} \), then \(b \in a\mathbb{Z} \), so there exists \(t \in \mathbb{Z} \) such that \(b = at \), and thus \(a \mid b \).
 ii. \(\Leftarrow \) If \(a \mid b \), then \(b = as \) for some \(s \in \mathbb{Z} \), thus for any \(x \in b\mathbb{Z} \), \(x = bq \), for some \(q \in \mathbb{Z} \), and by substitution, \(x = aq \in a\mathbb{Z} \).

3. Prove or disprove: \(a\mathbb{Z} \cup b\mathbb{Z} \subseteq \text{lcm}[a, b] \).
 This isn’t true, try some examples. Can you prove that \(\text{lcm}[a, b]\mathbb{Z} \subseteq a\mathbb{Z} \cup b\mathbb{Z} \).

4. Define: \(a \in \mathbb{Z} \) is prime; \(b \in \mathbb{Z} \) is composite.
 \(a \) is prime if it’s only divisors are \(\pm 1 \) and \(\pm a \). A number is composite if it is not prime. Alternatively, \(a \) is composite if it has a divisor other than \(\pm 1 \) and \(\pm a \).
5. Explain why \(a \in \mathbb{Z} \) \(a > 0 \) is prime if and only if \(a \) does not have any divisors \(d \), where \(0 < d \leq \sqrt{a} \).

(\(\Rightarrow \)) If \(a \) is prime then it’s only only positive divisors are 1 and \(a \), and these are not in the specified range.

(\(\Leftarrow \)) Do by contradiction, suppose that \(a \) has positive divisors, but none less than \(\sqrt{a} \), then \(a = bc \), where, \(b, c > \sqrt{a} \), and thus \(a = bc > \sqrt{a} \cdot \sqrt{a} = a \), which is a contradiction, and the result follows.

6. Define: \(a \) is congruent to \(b \) modulo \(n \). Then give an equivalent characterization and prove that it is equivalent.

\(a \) and \(b \) are congruent modulo \(n \) if \(a \) and \(b \) have the same divisor when divided by \(n \).

Equivalently, \(n | (b - a) \). See book for proof.

7. Find 6 different integers that are congruent to 4 modulo 17.

Any integer \(c = 17k + 4 \), \(k \in \mathbb{Z} \) will do. So I’ll go with -13, 21, 38, 55, 72, 89.

8. Suppose that \(p_1, p_2, p_3, p_4 \) are distinct primes, and \(a = p_1^3p_2^2p_3 \) and \(b = p_4^2p_3^1p_4^2 \). What are the factorizations of the lcm and gcd of \(a \) and \(b \)?

\(\text{lcm is } p_1^3p_2^2p_3^2 \),

\(\text{gcd is } p_1^1p_3^1p_4^1 \).

Longer answer.

9. Prove: If \(I \) is a subset of integers that is closed under addition and subtraction, then \(I \) is either \(\{0\} \) or \(I = a\mathbb{Z} \) for some \(a \in \mathbb{Z}^+ \).

This is in the book.

10. If we divide \(a \) by \(b \), yielding \(ax + r = b \), then prove \(\text{gcd}(a, b) = \text{gcd}(b, r) \). \([\text{Hint: recall if all common divisors of } a \text{ and } b \text{ divide } r, \text{ then } \text{gcd}(a, b) \text{ divides both } b \text{ and } r. \text{ Thus it divides } \text{gcd}(b, r)].\) Rewrite the equality and similarly prove \(\text{gcd}(b, r) \) divides \(\text{gcd}(a, b) \), and draw your conclusion.

Note \(ax - b = -r \), so if \(d \) divides \(a \) and \(b \), then \(d \) divides \(r \). Thus the gcd of \(a \) and \(b \) divides \(r \). Now clearly, the gcd also divides \(b \), so \(\text{gcd}(a, b) = \text{gcd}(b, r) \).

A similar argument shows that the reverse divides is true too. Then answer follows by 1b above.

11. Prove: if \((a, b) = 1 \) and \((a, c) = 1 \), then \((a, bc) = 1 \).

You know this - if not, it’s in the book.

12. Prove: if \(p \) is prime, and \(p | ab \), then \(p | a \) or \(p | b \). SAME

13. Linear congruences

(a) State a necessary and sufficient condition for \(ax \equiv b \pmod{n} \) to have a solution. [“‘Necessary and sufficient’” is another way of saying “‘if and only if’”]

\(ax \equiv b \pmod{n} \) if and only if \(\text{gcd}(a, n) = b \)

Solve the ones below by checking first if there is a solution. If so, change to a linear combo and use Euclidean algorithm.

(b) Solve: \(6x \equiv 5 \pmod{8} \)

No solution - 2 doesn’t divide 5.

Next two are similar to example in class.

(c) Solve: \(7x \equiv 1 \pmod{16} \) (not by inspection)

(d) Find a solution to \(7x \equiv 3 \pmod{16} \)

14. Prove: if \(a \equiv b \pmod{n} \) and \(c \equiv d \pmod{n} \), then \(a - c \equiv b - d \pmod{n} \).

See book and notes. END NOTE: MAKE SURE you look at the problems I suggested during review.)

DON’T FORGET EASY INDUCTION PROBLEM EXPECTED?