4.11
(a) Show that if \(f(x) = \log(x) \), then the condition number, \(c(x) = \frac{1}{\log(x)} \).
(b) Using the above result (or otherwise), show that \(\log(x) \) is ill-conditioned near \(x = 1 \).

4.16
(a) How are \(\text{Cond}_2(A) \) and \(\text{Cond}_2(A^{-1}) \) related?
(b) Show that
 (i) \(\text{Cond}(A) \geq 1 \) for a norm \(\| \cdot \| \) such that \(\| I \| \geq 1 \);
 (ii) \(\text{Cond}_2(A^T A) = \{\text{Cond}_2(A)\}^2 \);
 (iii) \(\text{Cond}(cA) = \text{Cond}(A) \) for any given norm.

4.17
(a) Let \(A \) be an orthogonal matrix. Then show that \(\text{Cond}_2(A) = 1 \).
(b) Show that \(\text{Cond}_2(A) = 1 \) if and only if \(A \) is a scalar multiple of an orthogonal matrix.

4.18
Let \(U = (u_{ij}) \) be a nonsingular upper triangular matrix. Then show that

\[
\text{Cond}_\infty(U) \geq \frac{\max |u_{ii}|}{\min |u_{ii}|}.
\]

Hence construct a simple example of an ill conditioned nondiagonal symmetric positive definite matrix.

4.19
Let \(A = LDL^T \) be a symmetric positive definite matrix where \(L \) is a unit lower triangular matrix and \(D = \text{diag}(d_{ii}) \). Then show that

\[
\text{Cond}_2(A) \geq \frac{\max(d_{ii})}{\min(d_{ii})}.
\]

Hence construct an example for an ill-conditioned nondiagonal symmetric positive definite matrix.

4.20
Prove that for a given norm, \(\text{Cond}(AB) \leq \text{Cond}(A)\text{Cond}(B) \).