MATH 435
Spring 2013
Prof. Biswa Nath Datta
Review for
Exam # 2
1. Learn the derivations of the composite Trapezoidal and Simpson’s rules and those of their error formulas.

2. Construct a quadratical formula of the form

\[\int_{-1}^{1} f(x)dx = A_0 f(-1) + A_1 f(0) + A_2 f(1) \]

Which is exact for all polynomials of as high degree as possible.

3. Determine the values of \(h \) and \(N \) to approximate the following integrals to within \(\varepsilon = 10^{-8} \) using both the composite trapezoidal and Simpson’s rules:

 (a) \(\int_0^2 \frac{1}{x + 4} \, dx \)

 (b) \(\int_0^1 e^{-x^2} \, dx \)

 (c) \(\int_0^2 e^x \sin 3x \, dx \)

 (d) \(\int_0^\pi \sin x \, dx \)
4. Let

\[f(x) = x, \quad 0 \leq x \leq \frac{1}{2} \]

\[= 1 - x, \quad \frac{1}{2} \leq x \leq 1. \]

Calculate approximations of \(\int_0^1 f(x) \, dx \) using

(a) The trapezoidal rule over the interval \([0, 1]\)

(b) The trapezoidal rule over the interval \([0, \frac{1}{2}]\) and \([\frac{1}{2}, 1]\)

(c) Simpson's rule over \([0, 1]\)

Compare the results
5. Learn the derivation of Gaussian Quadrature formula with \(n = 2 \)

6. Determine the constants \(\alpha, \beta, \nu \) and \(\delta \) so that the quadrature formula

\[
\int_{-1}^{1} f(x)dx = \alpha f(-1) + \beta f(1) + \nu f'(-1) + \delta f'(1)
\]

has a degree of precision 3.

7. Approximate the following integrals using Gaussian Quadrature with \(n = 2 \)

\[
\text{(a)} \quad \int_{0}^{\frac{\pi}{4}} e^{3x} \sin 2x \, dx
\]

\[
\text{(b)} \quad \int_{3}^{3.5} \frac{x}{\sqrt{x-9}} \, dx.
\]
8. Learn all the properties of Chebyshev polynomials and their derivations.

9. Suppose that \(P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0 \) needs to be approximate by a polynomial \(P_{n-1}(x) \) of degrees \(n - 1 \) such that

\[
\max_{-1 \leq x \leq 1} |P_n(x) - P_{n-1}(x)|
\]

is as small as possible. Then prove that

\[
P_{n-1}(x) = P_n(x) - a_n \tilde{T}_n(x),
\]

where \(\tilde{T}(x) \) is the monic Chebyshev polynomial of degree \(n \).

What is the minimum value?

Apply the above result to the polynomial \(P_4(x) = 1 + \frac{x^2}{2} + \frac{x^3}{4} + \frac{x^4}{24} \) in \([-1, 1]\)

Find the minimum value.

10. Find the best possible choices of nodes for interpolation of \(f(x) = e^x \) with a polynomial of degree at most 3 in \([2, 3]\)
11. Learn the Normal Equations Method for least-square approximations of a set of discrete data and of a function in an arbitrary interval.

12. Construct an interpolating polynomial of degree at most three to interpolate \(f(x) = e^{-x^2} \) using zeros of an appropriate Chebyshev polynomial on \([2,3]\). Repeat the problem with other functions, \(f(x) = \sin 3x \), and \(f(x) = \frac{1}{x} \).

13. Learn the process of power series economization with the zeros of Chebyshev polynomials. Practice the process with \(f(x) = \sin x \) starting with a power series expansion of order 6 on \([-1,1]\) and then reducing the degree while keeping errors less than 0.01.

14. Learn the derivations of

 (a) Taylor's method of order \(k \)

 (b) Heun's method

 (c) Midpoint method

 (d) Modified Euler's method
15. Use Euler's method to approximate the solutions of

(a) \(y' = y = t^2 + 1, \, 0 \leq t \leq 2, \, y(0) = 0.5, \) with \(h = 0.5 \)

(b) \(y' = \frac{y}{t} - \left(\frac{y}{t} \right)^2, \, 1 \leq t \leq 2, \, y(1) = 1 \) with \(h = 0.1 \).

Compute both the local and global error bounds in each case for Euler's method.

16. Consider solving the IVP: \(y' = -2y, \, 0 \leq t \leq 1, \, y(0) = 1 \), using Euler's method.

Find an upper bound on the local error at \(t = 1 \) in terms of the step size \(h \). How small does \(h \) have to be to obtain an accuracy of \(\epsilon = 10^{-5} \) at \(t = 1 \)?

17. Apply Midpoint method, the modified Euler's method and Heun's method to

\[y' = -y + t + 1, \, 0 \leq t \leq 1, \, y(0) = 1, \, h = 0.01 \]

to compute approximations of \(y(0.01), y(0.02), \ldots, y(1) \).

Tabulate the results of approximations by each method for \(t_i = 0, 0.1, 0.2, \ldots, 1 \)

Compare the errors of those approximations with the actual values.
18. Derive Euler's Trapezoidal predictor-corrector method. Practice this method with

\[y' = -ty^2, \quad y(2) = 1 \]

\[h = 0.1 \text{ on } [2, 3] \]

Does the inner iteration converge for this value of \(h \)? Give reasons for your answer.