Cyclic Groups

Definition A group G is called *cyclic* if there is an element $a \in G$ such that the cyclic subgroup generated by a is the entire group G. In other words,

$$G = \{a^n : n \in \mathbb{Z}\}.$$

Such an element a is called a *generator* of G.

Note that a cyclic group is abelian. On the other hand, a group which is abelian is not necessarily cyclic.

Examples and Non-Examples

1) \mathbb{Z}_n

2) S_3

3) \mathbb{Z}

4) \mathbb{R}

5) $\mathbb{Z} \times \mathbb{Z}$

6) \mathbb{Z}_{19}^\times
Theorem: Suppose \(G \) is cyclic and \(a \in G \) is a generator of \(G \). If \(G \) is an infinite group, then there is an isomorphism \(\varphi: G \to \mathbb{Z} \) determined completely by \(\varphi(a) = 1 \). If \(G \) is finite with order \(n \), then there is an isomorphism \(\varphi: G \to \mathbb{Z}_n \) determined completely by \(\varphi(a) = [1]_n \).

How can a finite abelian group not be cyclic? Suppose \(G \) is an abelian group of order \(n \). By Lagrange’s theorem \(a^n = e \) for any element \(a \) of \(G \). But that doesn’t mean that the order of \(a \) is \(n \); it only means that the order of \(a \) divides \(n \).

For example, consider the following three groups of order 8: \(\mathbb{Z}_8, \mathbb{Z}_4 \times \mathbb{Z}_2, \text{and} \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \). The first is cyclic (and has \(\phi(8) = 4 \) elements of order 8, i.e., 4 generators). The second has no elements of order 8, though it does have 2 elements of order 4. The third has the identity and 7 elements of order 2.

Suppose \(G \) is an abelian group of order 6. Then \(G \) must be cyclic. In particular, \(\mathbb{Z}_6^\times \) is cyclic. Recall why this is so. First, there can’t be more than one element of order 2, since two such elements in an abelian group give us a subgroup of order 4 (an impossibility here by Lagrange’s Theorem). Second, there are an even number of elements of order 3. By Lagrange’s Theorem, we’re led to a couple of possibilities: either there is an element of order 2 \(\cdot 3 \) and \(G \) is cyclic, or there is an element of order 2 and an element of order 3, and their product has order \(2 \cdot 3 \) so that \(G \) is cyclic once more.

The above argument works exactly the same for abelian groups of order \(2p \), where \(p \) is an odd prime number. Thus, if \(G \) is an abelian group of order \(2p \), then \(G \) must be cyclic. In particular, \(\mathbb{Z}_p^\times \) is cyclic.

Suppose \(G \) is an abelian group of order 12. Then \(G \) may not be cyclic. Is \(\mathbb{Z}_13^\times \) cyclic?
Definition: Suppose G is a group. Suppose there is some positive integer n such that $a^n = e$ for all elements a of G. Then the smallest such n is called the *exponent* of G.

Examples
1) \mathbb{Z}_9

2) $\mathbb{Z}_3 \times \mathbb{Z}_3$

3) A direct product of infinitely many copies of \mathbb{Z}_2.

4) S_4

Note: If G is a finite group, then $g^{\phi(G)} = e$ for all $g \in G$ by Lagrange’s Theorem, so the exponent of G is no larger than the order of G (though it may be smaller).