Math 620 Fall 2012
Week 3: Group Actions

Major Definitions: G-set, orbit, stabilizer, conjugation, normalizer, centralizer, p-group

Major Theorems: the “stabilizer/orbit theorem”, the orbit formula, the class equation, Cayley’s Theorem

Exercises:
1. Let X_n be the set of vertices of the regular n-gon, so that D_n acts as a transitive permutation group on X_n. For each $x \in X_n$, show that the stabilizer of x is a group of order 2.
2. If n is odd, show that D_n has n conjugate subgroups of order 2.
3. Show that D_n has a trivial center when n is odd. What if n is even?
4. If G is a p-group, show that G has a non-trivial center.
5. Prove Cauchy’s Theorem: if G is a finite group and p is a prime dividing the order of G, then G has an element of order p. I’m well aware that the text has a proof. However, I want you to use induction on the order of G and the class equation to reduce this to the case where G is abelian.
6. If G is a finite p-group and N is a non-trivial normal subgroup of G, then show that N has a non-trivial intersection with the center of G.
7. Do page 51 #4.
8. If p is a prime and $\tau \in S_p$ is a transposition, show that τ and $(1, 2, \ldots, p)$ generate S_p.
9. If p is a prime and G is a transitive subgroup of S_p that contains a transposition, show that $G = S_p$.

Numbers 3, 5, and 9 are to be presented in class on Friday.