Major Definitions: Sylow p-subgroup, simple group

Major Theorems: the three Sylow theorems

Exercises:
1. Show that a group of order 108 is not simple.
2. If G is a group of order pq, where p and q are distinct primes, then G is not simple.
3. If G is an infinite group and H is a subgroup of finite index, then H contains a normal subgroup (of G) of finite index.
4. Suppose G is a finite group and p is the smallest prime dividing the order of G. Suppose further that H is a subgroup of index p. Show that H is a normal subgroup.
5. If G is a group of order p^n, where p is a prime and $n > 0$, and $0 \leq k \leq n$, then G has a normal subgroup of order p^k.