Math 620 Fall 2012

Week 5: Rings and Fields

Major Definitions: Ring, division ring, field, vector space over a division ring, linear independence, basis, linear transformation, homomorphism, characteristic, integral domain

Major Theorems/Results: any linearly independent set can be extended to a basis, the quotient field of an integral domain

Exercises:

1. Let R be a commutative ring with identity of characteristic $p > 0$. The Frobenius map is the function that sends each element of R to its pth power. Show that this is a ring homomorphism. (Hint: binomial theorem.)

2. Show that the Frobenius homomorphism of a finite field is an automorphism.

3. Give an example of an infinite field of characteristic $p > 0$ where the Frobenius homomorphism is not an automorphism.

4. Let \mathbb{F}_q be a finite field with q elements containing the finite field \mathbb{F}_p with p elements. Show that \mathbb{F}_q is a vector space over \mathbb{F}_p. Conclude that q is a power of p.

5. Let V be a vector space of dimension n over a field \mathbb{F}_q with $q < \infty$ elements. How many non-zero elements are in V? Show that $\text{GL}_n(\mathbb{F}_q)$ acts transitively on $\mathbb{F}_q^n \setminus \{0\}$. What is the stabilizer of $(1, 0, \ldots, 0) \in \mathbb{F}_q^n$ in $\text{GL}_n(\mathbb{F}_q)$? Use your answers to get a formula for the number of elements in $\text{GL}_n(\mathbb{F}_q)$ in terms of n, q and the number of elements in $\text{GL}_{n-1}(\mathbb{F}_q)$. What is the order of $\text{GL}_n(\mathbb{F}_q)$?

6. Show that a finite integral domain is a field (the proof is easier than you think). A much harder result, due to Wedderburn, is that a finite division ring is a field. Maybe we’ll do that later.