Math 620 Fall 2012
Week 8: Algebraic Extensions

Major Definitions: algebraic extension, algebraic element, algebraically closed, algebraic closure, degree of an extension

Major Theorems/Results: existence of algebraically closed fields and algebraic closures, degrees of extensions in towers

Exercises:

1. If \(\alpha \) is algebraic over \(F \) of odd degree, show that \(F(\alpha) = F(\alpha^2) \).

2. Show that \(\mathbb{Q}(i) \) and \(\mathbb{Q}(\sqrt{2}) \) (subfields of \(\mathbb{C} \)) are isomorphic as vector spaces over \(\mathbb{Q} \), but not isomorphic as fields.

3. Explicitly construct an algebraic extension of \(\mathbb{Z}/3\mathbb{Z} \) where the polynomial \(X^3 - 2 \) factors completely. Do the same for \(\mathbb{Z}/5\mathbb{Z}, \mathbb{Z}/7\mathbb{Z} \), and \(\mathbb{Q} \).

4. Suppose \(K_1 \) and \(K_2 \) are algebraic closures of a field \(F \). Prove that there is an isomorphism \(\phi: K_1 \rightarrow K_2 \) such that \(\phi(a) = a \) for all \(a \in F \).

5. Suppose \(p \) and \(q \) are distinct prime numbers. What is \([\mathbb{Q}(\sqrt{p}, \sqrt{q}) : \mathbb{Q}]\)? Justify your answer.