We fix a number field K. The degree of K over \mathbb{Q} is denoted by n. There are n embeddings $\sigma: K \to \mathbb{C}$; there are r embeddings into \mathbb{R} and s pairs of complex conjugate embeddings into \mathbb{C} (not real). Thus $n = r + 2s$. These embeddings are ordered so that $\sigma_i: K \to \mathbb{R}$ for $i \leq r$ and $\sigma_{i+s} = \overline{\sigma_i}$ for $r + 1 \leq i \leq r + s$, where the overline denotes complex conjugation. As usual Δ_K, denotes the square root of the absolute value of the discriminant of K. We also use $e_i = \begin{cases} 1 & \text{if } i \leq r, \\ 2 & \text{if } r + 1 \leq i \leq r + s. \end{cases}$

Define $\rho: K \to \mathbb{R}^n$ by

$$\rho(\alpha) = \left(\sigma_1(\alpha), \ldots, \sigma_r(\alpha), \Re(\sigma_{r+1}(\alpha)), \ldots, \Re(\sigma_{r+s}(\alpha)), \Im(\sigma_{r+1}(\alpha)), \ldots, \Im(\sigma_{r+s}(\alpha)) \right).$$

Note that we previously proved the following result.

Proposition 1: Let \mathfrak{A} be a non-zero fractional ideal of K. Then $\rho(\mathfrak{A})$ is a lattice in \mathbb{R}^n with

$$\det(\rho(\mathfrak{A})) = N(\mathfrak{A})2^{-s}\Delta_K.$$

We set

$$(\mathbb{R}^n)^* = \{ x = (x_1, \ldots, x_n) \in \mathbb{R}^n : x_1 \cdots x_r(x_{r+1}^2 + x_{r+s+1}^2) \cdots (x_{r+s}^2 + x_{r+2s}^2) \neq 0 \}$$

and

$$H = \{ y = (y_1, \ldots, y_{r+s}) \in \mathbb{R}^{r+s} : y_1 + \cdots y_{r+s} = 0 \},$$

so that $H \subset \mathbb{R}^{r+s}$ is a subspace of dimension $r + s - 1$. For $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$ set

$$p(x) := x_1 \cdots x_r(x_{r+1}^2 + x_{r+s+1}^2) \cdots (x_{r+s}^2 + x_{r+2s}^2).$$

(Note that $p \circ \rho(\alpha) = N_K/\mathbb{Q}(\alpha)$ for all $\alpha \in K$.) Define the map $pr: (\mathbb{R}^n)^* \mapsto H$ by

$$pr(x_1, \ldots, x_n) = \left(\log |x_1|, \ldots, \log |x_r|, \log(x_{r+1}^2 + x_{r+s+1}^2), \ldots, \log(x_{r+s}^2 + x_{r+2s}^2) \right) - \left((e_1/n) \log |p(x)|, \ldots, (e_{r+s}/n) \log |p(x)| \right).$$

We also previously proved the following result.

Proposition 2: Let $U \subset \mathcal{O}_K^\times$ denote the group of units of the ring \mathcal{O}_K. Then $pr \circ \rho(U)$ is a lattice in H of dimension $r + s - 1$. Thus, there are units $\epsilon_1, \ldots, \epsilon_{r+s-1}$ such that any unit ϵ may be written uniquely as a product

$$\epsilon = \nu^{n_1} \cdots \nu^{n_{r+s-1}},$$

where ν is a root of unity and $n_1, \ldots, n_{r+s-1} \in \mathbb{Z}$.

For a fixed bound $B > 0$, set

$$C(B) := \{ x \in \mathbb{R}^n : |p(x)| \leq B \}.$$

Let $\epsilon_1, \ldots, \epsilon_{r+s-1}$ be a system of fundamental units as in Proposition 2, so that

$$\mathcal{F} := \{ y = c_1 pr \circ \rho(\epsilon_1) + \cdots + c_{r+s-1} pr \circ \rho(\epsilon_{r+s-1}) : c_1, \ldots, c_{r+s-1} \in [0, 1] \}$$
is a fundamental domain for the lattice \(\text{pr} \circ \rho(U) \subset H \) in Proposition 2. Set \(C' \) to be the inverse image

\[
C' := \text{pr}^{-1}(\mathcal{F}).
\]

Thus, each non-zero principal ideal \(I = (\alpha) \subseteq \mathcal{O}_K \) will have precisely \(w_K \) representatives in the intersection \(\rho(\mathcal{O}_K) \cap C(B) \cap C' \), where \(w_K \) denotes the number of roots of unity in \(\mathcal{O}_K \). One notes from the definitions that \(C(B) = B^{1/n}C(1) \) and \(B^{1/n}C' = C' \) for all \(B > 0 \). Thus, the volume of \(C(B) \cap C' \) is \(BV \), where \(V \) denotes the volume of \(C(1) \cap C' \). Our goal is to compute \(V \).

We first remark that the statement \((x_1, \ldots, x_n) \in C_1(1) \cap C'\) depends entirely on the quantities \(|x_i|\) for \(1 \leq i \leq r \) and \(\sqrt{x_i^2 + x_{i+s}^2} \) for \(r + 1 \leq i \leq r + s \). Letting

\[
u_i = \begin{cases} |x_i| & \text{if } 1 \leq i \leq r, \\ \sqrt{x_i^2 + x_{i+s}^2} & \text{if } 1 + r \leq i \leq r, \end{cases}
\]

and

\[
u = \prod_{i=1}^{r+s} \nu_i^{e_i},
\]

we have

\[
V = 2^r (2\pi)^s \int \cdots \int_{D} \prod_{i=1}^{r+s} \nu_i^{e_i-1} du_i,
\]

where the domain of integration \(D \) is defined by

\[
u < 1, \ \nu_i > 0 \text{ for } i = 1, \ldots, r + s,
\]

and

\[
(e_1 \log \nu_1 - (e_1/n) \log \nu, \ldots, e_{r+s} \log \nu_{r+s} - (e_{r+s}/n) \log \nu) \in \mathcal{F}.
\]

Letting \(v_i = \nu_i^{e_i} \) gives

\[
V = 2^r \pi^s \int \cdots \int_{D'} \prod_{i=1}^{r+s} dv_i,
\]

where the domain of integration \(D' \) is defined by

\[
u < 1, \ \nu_i > 0 \text{ for } i = 1, \ldots, r + s,
\]

and

\[
(\log v_1 - (e_1/n) \log u, \ldots, \log v_{r+s} - (e_{r+s}/n) \log u) \in \mathcal{F}.
\]

Note that \(D' \) is given by \(0 < \nu < 1 \) and \(c_1, \ldots, c_{r+s-1} \in [0, 1) \), where

\[
(\log v_1 - (e_1/n) \log u, \ldots, \log v_{r+s} - (e_{r+s}/n) \log u) = c_1 \text{pr} \circ \rho(e_1) + \cdots + c_{r+s-1} \text{pr} \circ \rho(e_{r+s-1}).
\]

Thus

\[
V = 2^r \pi^{s} \int_{0}^{1} \cdots \int_{0}^{1} \frac{\partial(v_1, \ldots, v_{r+s})}{\partial(u, c_1, \ldots, c_{r+s-1})} |du| \prod_{j=1}^{r+s-1} dc_j.
\]

It remains to compute the Jacobian.
To do that, we note that
\[
\log v_i = \frac{e_i}{n} \log u + e_i \sum_{j=1}^{r+s-1} c_j \log |\sigma_i(\epsilon_j)|
\]
for all \(i = 1, \ldots, r + s\). Via logarithmic differentiation, this implies that
\[
\frac{\partial v_i}{\partial u} = \frac{e_i v_i}{nu}
\]
for all \(i = 1, \ldots, r + s\) and
\[
\frac{\partial v_i}{\partial c_j} = v_i e_i \log |\sigma_i(\epsilon_j)|
\]
for all \(i = 1, \ldots, r + s\) and \(j = 1, \ldots, r + s - 1\). The Jacobian is thus
\[
\det \begin{pmatrix}
 e_1 v_1 \log |\sigma_1(\epsilon_1)| & \cdots & e_{r+s} v_{r+s} \log |\sigma_{r+s}(\epsilon_1)| \\
 \vdots & \ddots & \vdots \\
 e_1 v_1 \log |\sigma_1(\epsilon_{r+s-1})| & \cdots & e_{r+s} v_{r+s} \log |\sigma_{r+s}(\epsilon_{r+s-1})|
\end{pmatrix}
\]
\[
= \frac{1}{n} \det \begin{pmatrix}
 e_1 \log |\sigma_1(\epsilon_1)| & \cdots & e_{r+s} \log |\sigma_{r+s}(\epsilon_1)| \\
 \vdots & \ddots & \vdots \\
 e_1 \log |\sigma_1(\epsilon_{r+s-1})| & \cdots & e_{r+s} \log |\sigma_{r+s}(\epsilon_{r+s-1})|
\end{pmatrix}
\]
\[
= \frac{1}{n} \det \begin{pmatrix}
 e_1 \log |\sigma_1(\epsilon_1)| & \cdots & e_{r+s-1} \log |\sigma_{r+s-1}(\epsilon_1)| & 0 \\
 \vdots & \ddots & \vdots & \vdots \\
 e_1 \log |\sigma_1(\epsilon_{r+s-1})| & \cdots & e_{r+s-1} \log |\sigma_{r+s-1}(\epsilon_{r+s-1})| & 0 \\
 e_1 & \cdots & e_{r+s-1} & n
\end{pmatrix}
\]
\[
= R_K,
\]
the regulator of \(K\). (The last column in the latter matrix above is the sum of the columns of the previous matrix.)

We thus have
\[
V = 2^r \pi^s \int_0^1 \cdots \int_0^1 R_K \, du \prod_{j=1}^{r+s-1} dc_j = 2^r \pi^s R_K.
\]