Shift-Invariant Spaces in the Fractional Fourier Transform Domain

Ahmed I. Zayed,
Department of Mathematical Sciences, DePaul University
DePaul University, Chicago, IL 60614

Illinois/Missouri Applied Harmonic Analysis Seminar, NIU,
April 24, 2010
Outline

Ahmed I. Zayed

Shift-Invariant Spaces in the Fractional Fourier Transform Domain

His results were later refined by A. McBride and F. Kerr "On Namias’s fractional Fourier Transforms," IMA J. Appl. Math., (1987), who, among other things, also developed an operational calculus for the FRFT.

His results were later refined by A. McBride and F. Kerr "On Namias’s fractional Fourier Transforms," IMA J. Appl. Math., (1987), who, among other things, also developed an operational calculus for the FRFT.

It was implicitly used by E. Condon in 1937, Proc. National Academy of Science.

His results were later refined by A. McBride and F. Kerr "On Namias’s fractional Fourier Transforms," IMA J. Appl. Math., (1987), who, among other things, also developed an operational calculus for the FRFT.

It was implicitly used by E. Condon in 1937, Proc. National Academy of Science.

The fractional Fourier transform gained very much popularity in the early 1990s because of its numerous applications in signal analysis and optics.

In an optical system with several lenses and using a point source for illumination, one observes the Fourier transform (the absolute value) of the object at the image of the point source. In the simplest case, the Fourier transform is observed at the focal plane.
In an optical system with several lenses and using a point source for illumination, one observes the Fourier transform (the absolute value) of the object at the image of the point source. In the simplest case, the Fourier transform is observed at the focal plane. Whatever is being observed halfway between the lens and the focal plane may be called the (one half Fourier transform)!
In an optical system with several lenses and using a point source for illumination, one observes the Fourier transform (the absolute value) of the object at the image of the point source. In the simplest case, the Fourier transform is observed at the focal plane. Whatever is being observed halfway between the lens and the focal plane may be called the (one half Fourier transform)!

For light propagation in quadratic graded-index media (fiber optics), it is known that the Fourier transform is produced at a certain distance d_0 that depends on the medium. Thus, it is reasonable to call the light distribution at distance ad_0, $0 < a \leq 1$, the fractional Fourier transform of order a.

Ahmed I. Zayed
Shift-Invariant Spaces in the Fractional Fourier Transform Domain
The Wigner distribution of a signal f is defined as

$$W_f(u, v) = \int_{\mathbb{R}} f(u + x/2) f^*(-u - x/2) e^{-2\pi ivx} dx.$$
The Wigner distribution of a signal f is defined as

$$W_f(u, v) = \int_{\mathbb{R}} f(u + x/2)f^*(u - x/2)e^{-2\pi ivx} dx.$$

It is related to the Radar ambiguity function. The Wigner distribution of $\hat{W_f}(u, v)$ is obtained from $W_f(u, v)$ by a rotation of $\pi/2$.

$$\hat{W_f}(u, v) = W_f(-v, u).$$
The Wigner distribution of a signal f is defined as

$$W_f(u, v) = \int_{\mathbb{R}} f(u + x/2)f^*(u - x/2)e^{-2\pi ivx} \, dx.$$

It is related to the Radar ambiguity function. The Wigner distribution of $\hat{W}_f(u, v)$ is obtained from $W_f(u, v)$ by a rotation of $\pi/2$.

$$\hat{W}_f(u, v) = W_f(-v, u).$$

What does correspond to a rotation by an angle $\pi/4$?
The Wigner distribution of a signal f is defined as

$$W_f(u, v) = \int_{\mathbb{R}} f(u + x/2)f^*(u - x/2)e^{-2\pi ivx} \, dx.$$

It is related to the Radar ambiguity function. The Wigner distribution of $\hat{W}_f(u, v)$ is obtained from $W_f(u, v)$ by a rotation of $\pi/2$.

$$\hat{W}_f(u, v) = W_f(-v, u).$$

What does correspond to a rotation by an angle $\pi/4$? Whatever it is, we call it the one half Fourier transform.
More generally, what does correspond to a rotation by an angle θ? i.e., Find g such that

$$W_g(u, v) = W_f(u \cos \theta - v \sin \theta, u \sin \theta + v \cos \theta).$$
More generally, what does correspond to a rotation by an angle \(\theta \)? i.e., Find \(g \) such that

\[
W_g(u, v) = W_f(u \cos \theta - v \sin \theta, u \sin \theta + v \cos \theta).
\]

\(g \) is the fractional Fourier transform with angle \(\theta \).
The Fractional Fourier transform may also be viewed as a family of bounded operators \mathcal{F}_α, with $0 \leq \alpha \leq 1$, such that

$$\mathcal{F}_0(f) = f, \quad \mathcal{F}_1 = \hat{f}.$$
The Fractional Fourier transform may also be viewed as a family of bounded operators \mathcal{F}_α, with $0 \leq \alpha \leq 1$, such that

$$\mathcal{F}_0(f) = f, \quad \mathcal{F}_1 = \hat{f}.$$

In practice, it is indexed by an angle $0 \leq \theta \leq 2\pi$ so that

$$\mathcal{F}_0(f) = f, \quad \mathcal{F}_{\pi/2} = \hat{f}, \quad \mathcal{F}_\pi (f(x)) = f(-x), \quad \mathcal{F}_{2\pi} = f.$$
The fractional Fourier Transform (FrFT)

\[\hat{x}_\theta(\omega) = \int x(t) e^{j\frac{\omega^2 + t^2}{2} \cot \theta - j\omega t \csc \theta} dt \]

Properties:
- Bandlimitedness
- Orthonormality
- Preserves L₂–norm (Parseval – Plancheral)
- Hermite polynomials are Eigen Functions
- Semi-group Property
Fractional Form of Fourier Operator – I

\[\mathbf{FT} \{ \Psi_n(t) \} = \langle \Psi_n(t), e^{j\omega t} \rangle = \lambda_n \Psi_n(\omega) \]

Normalized Hermite Polynomials

\[\Psi_n(t) = \frac{2^{1/4}}{\sqrt{2^n n!}} H_n(\sqrt{2\pi t}) \exp \left(-\pi t^2 \right) \]

Eigen Functions

\[\langle \Psi_n, \Psi_m \rangle = \delta_{m,n} \]

Eigen Values

\[\lambda_n = e^{jn\pi/2} \]
Possible because Eigen-functions are Orthonormal!

$$\left\{ \underbrace{\text{FT} \cdots \text{FT}}_{p\text{-times}} \{\Psi_n(t)\} \right\} = \langle \Psi_n(t), e^{j\omega t} \rangle = \lambda_n^p \Psi_n(\omega)$$

$$\text{FT}^p \{f(t)\} = \sum_{n=-\infty}^{\infty} \langle f, \Psi_n \rangle \cdot \lambda_n^p \Psi_n(\omega)$$

$$K_p(t, \omega) = \sum_{n=-\infty}^{\infty} \lambda_n^p \cdot \Psi_n^*(t) \Psi_n(\omega)$$

Key words: Mercer’s Formula, Reproducing Kernel Hilbert Space...
Sampling of Sparse Signals in FrFT Domain

Signal of Interest: Sparse in Time

\[x(t) = \sum_{k=0}^{K-1} \sum_{n} c_k \delta(t - t_k - n\tau) \]

Periodic stream of Diracs with TWO K Degrees of Freedom

Innovations: Time instances \(\{t_k\} \) and Amplitudes \(\{c_k\} \)

Rate of innovation: Number of degrees of freedom per unit of time.
Shannon’s Sampling Theorem for FrFT Domain

Theorem (Shannon FrFT: Zayed-96, Xia-96, Erseghe-99, Garcia-00, Candan-03, Torres-06, Tao-08). Let $x(t)$ be a continuous-time signal. If the spectrum of $x(t)$, i.e. $\hat{x}_\theta(\omega)$ is fractional bandlimited to Ω_m, then $x(t)$ is completely determined by giving its ordinates at a series of equidistant points spaced $T = \frac{\pi}{\Omega_m} \sin \theta$ seconds apart. And thus,

$$x(t) = e^{-j\frac{\cot \theta}{2} t^2} \sum_{n=-\infty}^{+\infty} x(nT)e^{j\frac{\cot \theta}{2} (nT)^2} \text{sinc} \left((t - nT)\omega_m \csc \theta\right)$$

Extension of Shannon’s sampling theorem to FrFT shows its association to a Nyquist-like bound.
Quick Proof! (Sampling: 50 Years After Shannon ...)

\[\varphi_n(t) = e^{-j \frac{t^2}{2}} \cot \theta \text{sinc}(t - nT) \]

For such an orthonormal family of functions, i.e. \(\{\varphi_n(t)\}_{n=-\infty}^{\infty} \), we know that \(x \in V \iff x = \mathcal{P}_V x \), where \(V \) is the approximation, so as,

\[V(\varphi) = \left\{ x(t) = \sum_{n \in \mathbb{Z}} \langle x, \varphi_n \rangle \varphi_n(t) : \langle x, \varphi_n \rangle \in l_2 \right\}. \]

\[\langle x, \varphi_n \rangle = x(nT) e^{j \frac{\cot \theta}{2} (nT)^2} \]

\[\mathcal{P}_V x = e^{-j \frac{\cot \theta}{2} t^2} \sum_{n \in \mathbb{Z}} x(nT) e^{j \frac{\cot \theta}{2} (nT)^2} \text{sinc}(t - nT) \]
Sampling of Sparse Signals in FrFT Domain

Signal of Interest: Sparse in Time

\[x(t) = \sum_{m} \hat{x}[m] \Phi_{\pi/2}(m, t) \]

Expansion in Fourier Basis

\[\Phi_{\pi/2}(m, t) \]

\[\text{generalization} \]

\[x(t) = \sum_{m} \hat{x}_\theta[m] \Phi(m, t) \]

Expansion in Fractional Fourier Basis

The Poisson summation formula!

\[\Phi^*_\theta(m, t) = \sqrt{\frac{\sin \theta - j \cos \theta}{T}} e^{\frac{j t^2 + (2\pi m \sin \theta / \tau)^3}{2} \cot \theta - \frac{j 2\pi m t}{\tau}} \]
Sampling of Sparse Signals in FrFT Domain

\[
\sum_{\ell \in \mathbb{Z}} \delta(t - \ell T) = \sqrt{\frac{1}{T}} \sum_{k \in \mathbb{Z}} \tilde{\delta}_\theta (k \omega_0 \sin \theta) \cdot e^{-j \left(\frac{t^2}{2} + \frac{k \omega_0 \sin \theta}{\tau} \right)} e^{j k \omega_0 t}.
\]

The Poisson summation formula for Fractional Fourier Transform Domain

\[
x(t) = e^{\frac{-jt^2 \cot \theta}{2}} \sum_{m \in \mathbb{Z}} \left(\sum_{k=0}^{K-1} c_k e^{\frac{j \cot \theta}{2} \left(i_k^2 - jmk_0 \right)} \right) e^{\frac{j 2\pi m}{\tau} t}
\]

Bon! The knowledge of K-complex exponentials is good enough for sampling signals in FrFT Domain.

\[
x(t) = \sum_{m \in \mathbb{Z}} \frac{1}{\tau} \left(\sum_{k=0}^{K-1} c_k e^{-j(2\pi mt_k / \tau)} \right) e^{j(2\pi mt / \tau)}
\]

Fourier Series Coefficients of some expansion
Theorem (FrFT – FRI): Let $x(t)$ be a τ-periodic stream of Diracs weighted by coefficients $\{c_k\}_{k=0}^{K-1}$ and locations $\{t_k\}_{k=0}^{K-1}$ with finite rate of innovation $\rho = \frac{2K}{\tau}$. Let the sampling kernel/prefilter $\varphi(t)$ be an ideal low-pass filter which has fractional bandwidth $[-B\pi, B\pi]$, where B is chosen such that $B \geq \rho$. If the filtered version of $x(t)$, i.e. $y(t) = x(t) *_{\theta} \varphi(-t)$ is sampled uniformly at locations $t = nT$, $n = 0, \ldots, N - 1$ then the samples,

$$y(nT) = x(t) *_{\theta} \varphi(-t)|_{t=nT}, n = 0, \ldots, N - 1,$$

are a sufficient characterization of $x(t)$, provided that $N \geq 2M_\theta + 1$ and $M_\theta = \left\lfloor \frac{B\tau \csc \theta}{2} \right\rfloor$.
Any Function in \(V(\phi) \) can be viewed as a convolution of a sequences \(\{ c(k) \} \in \ell^2 \) and a function \(\phi \in L^2(\mathbb{R}) \), where the convolution is defined as

\[
(c(k) \ast \phi)(t) = \sum_{k \in \mathbb{Z}} c(k) \phi(t - k).
\]
Going over to the fractional Fourier domain, we let
\[\lambda_\theta (t) = \exp \left(j \left(\frac{t^2}{2} \right) \cot \theta \right) \]
be a modulation function.
Going over to the fractional Fourier domain, we let
\(\lambda_\theta (t) = \exp (j (t^2/2) \cot \theta) \) be a modulation function. The chirp modulated and demodulated versions of a signal \(x(t) \) are respectively defined by

Modulation/up-chirping: \(\tilde{x}(t) = x(t)\lambda_\theta(t) \)

Demodulation/down-chirping: \(\hat{x}(t) = x(t)\lambda^*_\theta(t) \).
The fractional convolution of two input signals, $x(t)$ and $y(t)$ is defined as (A. Zayed, IEEE Sign. Proc. Letters, Vol. 5 (1998))

$$x(t) *_{\theta} y(t) = \sqrt{\frac{1 - j \cot \theta}{2\pi}} \lambda^*_\theta(t) \cdot \left([x(t) \lambda_\theta(t)] * [y(t) \lambda_\theta(t)] \right)$$

convolution of modulated inputs

$$= c(\theta) \lambda^*_\theta(t) \left\{ \hat{x}(t) * \hat{y}(t) \right\}, \quad (1)$$

where $c(\theta) = \sqrt{(1 - j \cot \theta)/2\pi}$.

Which leads to FrFT \{ $x(t) *_{\theta} y(t)$ \} = $\lambda^*_\omega \cdot \hat{x}_\theta(\omega) \hat{y}_\theta(\omega)$.

Ahmed I. Zayed

Shift-Invariant Spaces in the Fractional Fourier Transform Domain
Let $t_k = k\Delta$, where $\Delta = 2\pi \sin \theta$, be a sequence of uniformly spaced real numbers.
Let \(t_k = k \Delta \), where \(\Delta = 2\pi \sin \theta \), be a sequence of uniformly spaced real numbers.

Define the \textbf{discrete Fractional Fourier transform} of a sequence \(\{ x(k) \} \)

\[
\hat{X}_\theta(w) = \sum_{k=-\infty}^{\infty} x(k) K_\theta(k, w)
\]

(2)
Let \(t_k = k\Delta \), where \(\Delta = 2\pi \sin \theta \), be a sequence of uniformly spaced real numbers. Define the discrete Fractional Fourier transform of a sequence \(\{x(k)\} \)

\[
\hat{X}_\theta(w) = \sum_{k=-\infty}^{\infty} x(k) K_\theta(k, w)
\]

(2)

and define the convolution of a sequence and a function \(\{x(k)\} \) with \(\phi \in L^2(R) \) as

\[
h(t) = (x(k) *'_\theta \phi)(t) = c(\theta) \bar{\lambda}_\theta(t) \sum_{k=-\infty}^{\infty} \hat{x}(k) \hat{\phi}(t - t_k)
\]
Consider

\[\tilde{h}(t) = \lambda_\theta(t)h(t) = c(\theta) \sum_{k=\infty}^{\infty} \tilde{x}(k)\tilde{\phi}(t - t_k) \]

where \(\tilde{x}(k) = x(k)jat^2_k, \tilde{\phi}(t) = \phi(t)e^{jat^2}, \) and \(a = \cot \theta. \)

The fractional spectrum of \(h(t) \) is \(\hat{h}_\theta(\omega) = \lambda^*_{\theta}(\omega) \hat{P}_\theta(\omega) \hat{\phi}_\theta(\omega), \)

where \(\hat{P}_\theta \) is the discrete time fractional Fourier transform (DTFrFT) of the sequence \(\{ p(n) = e^{jat^2_n}x(n) \}. \)
Let $\{x(n)\} \in \ell_2$, $\phi \in L^2(R)$ and set

$$
\psi(t) = e^{jat^2} \phi(t), \quad p(n) = e^{jat^2_n} x(n)
$$

and consider the chirp-modulated shift-invariant subspaces of L^2

$$
V(\psi) = \text{cl} \left\{ \tilde{f} \in L^2 : \tilde{f}(t) = c(\theta) \sum_{k=-\infty}^{\infty} p(k) \psi(t - t_k) \right\}
$$

and

$$
V(\phi) = \text{cl} \left\{ f \in L^2 : f(t) = (x(n) \ast'_\theta \phi)(t) = \lambda^*_\theta(t) \tilde{f}(t), \ \tilde{f} \in V(\psi) \right\}
$$
Then \(\{\psi(t - t_k)\} \) is a Riesz basis for \(V(\psi) \) if and only if there exist two positive constants \(\eta_1, \eta_2 > 0 \) such that

\[
\eta_1 \leq \sum \left| \hat{\phi}_\theta(w + t_k) \right|^2 \leq \eta_2
\]

for all \(w \in [0, \Delta] \).

Other properties of shift-invariant spaces, such as sampling subspaces, etc, have been obtained in the fractional Fourier domain.
Then \(\{ \psi(t - t_k) \} \) is a Riesz basis for \(V(\psi) \) if and only if there exist two positive constants \(\eta_1, \eta_2 > 0 \) such that

\[
\eta_1 \leq \sum \left| \hat{\phi}_\theta(w + t_k) \right|^2 \leq \eta_2
\]

for all \(w \in [0, \Delta] \).

Other properties of shift-invariant spaces, such as sampling subspaces, etc, have been obtained in the fractional Fourier domain.

Thanks for listening.