1. Relative Weights

In terms of pounds,

<table>
<thead>
<tr>
<th>animal</th>
<th>average weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>elephant</td>
<td>9,000 pounds</td>
</tr>
<tr>
<td>bear</td>
<td>600 pounds</td>
</tr>
<tr>
<td>human</td>
<td>180 pounds</td>
</tr>
</tbody>
</table>

Thus an elephant weighs 15 times more than a bear
a bear weighs $3\frac{1}{3}$ times more than a human

Question: How much more does an elephant weigh than a human?

Answer: Multiply: An elephant weighs

$$15 \times \frac{10}{3} = 50$$
times as much as a human

2. Relative Speeds

In terms of mph (miles per hour),

<table>
<thead>
<tr>
<th>vehicle</th>
<th>average speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>airplane</td>
<td>600 mph</td>
</tr>
<tr>
<td>car</td>
<td>60 mph</td>
</tr>
<tr>
<td>bicycle</td>
<td>15 mph</td>
</tr>
<tr>
<td>walker</td>
<td>3 mph</td>
</tr>
</tbody>
</table>

Thus a plane travels 10 times faster than a car
a car travels 4 times faster than a bike
a bike travels 5 times faster than a person walking

Question: How much faster is traveling in an airplane compared to walking?
Answer: Multiply: An airplane travels

\[10 \times 4 \times 5 = 200 \]
times as fast as a person on foot.

3. **The Moral**

The moral to these two examples is that

Rates Multiply!

This is a famous rule of calculus, called the chain rule which says
If we have three variable \(x, y, \) and \(z, \)
If \(z \) is changing \(m \) times faster than \(y \)
and \(y \) is changing \(n \) times faster than \(x, \)
then \(z \) is changing \(m \cdot n \) times faster than \(x. \)

4. **The Chain Rule**

Since the derivate tells us the rate of change, the fact that rates multiply can be written succintly as

\[
\frac{dz}{dx} = \frac{dz}{dy} \cdot \frac{dy}{dx}
\]

This formula is called the **Chain Rule**

When measuring weights, our first example becomes

\[
\frac{d\text{elephant}}{d\text{human}} = \frac{d\text{elephant}}{d\text{bear}} \cdot \frac{d\text{bear}}{d\text{human}}
\]
5. The Chain Rule Continued

When measuring speed, the second example shows that you can string several rates together:

\[
\frac{d\text{ plane}}{d\text{ pedestrian}} = \frac{d\text{ plane}}{d\text{ car}} \cdot \frac{d\text{ car}}{d\text{ bike}} \cdot \frac{d\text{ bike}}{d\text{ pedestrian}}
\]

which illustrates why the rule is called the chain rule.

6. Using the Chain Rule

Suppose

\[z = y^2 \text{ and } y = x^3 + 11 \]

Use the chain rule to find \(\frac{dz}{dx} \)

\[
\frac{dz}{dx} = \frac{dz}{dy} \cdot \frac{dy}{dx}
\]

\[
= 2y \cdot 3x^2 = 2(x^3 + 11) \cdot 3x^2
\]

7. Direct Calculation

\[z = y^2 \text{ and } y = x^3 + 11 \]

So \(z = (x^3 + 11)^2 = x^6 + 22x^3 + 121 \)

So \(\frac{dz}{dx} = 6x^5 + 66x^2 \)

This is equivalent to our previous solution:

\[
\frac{dz}{dx} = 2(x^3 + 11) \cdot 3x^2 = 6x^3(x^3 + 11)
\]

\[
= 6x^6 + 66x^3
\]
8. Prime Notation Version

Suppose we combine two functions \(f \) and \(g \) to get

\[f \circ g(x) = f(g(x)) \]

Then the Chain Rules becomes

\[\frac{d}{dx}f(g(x)) = f'(g(x)) \cdot g'(x) \]

In words this says: the derivative of a composition is the derivative of the outer function evaluated at the inner functions times the derivative of the inside part.

9. Examples

Suppose \(f(x) = x^2 \) and \(g(x) = x^3 + 11 \)

Then \(f'(x) = 2x \) and \(g'(x) = 3x^2 \)

So \(\frac{d}{dx}f(g(x)) = f'(g(x)) \cdot g'(x) \)

\[= 2g(x) \cdot 3x^2 \]

\[= 2(x^3 + 11) \cdot 3x^2 \]

We have seen this example before.

10. Second Example

Differentiate \(y = \sqrt{7x^3 + x^2 + 1} \) and We are using two functions:
\(f(x) = \sqrt{x} \) and \(g(x) = 7x^3 + x^2 + 1 \).

Since \(f'(x) = \frac{1}{2}x^{-1/2} \) and \(g'(x) = 21x^2 + 2x \)

So \(\frac{d}{dx}f(g(x)) = f'(g(x)) \cdot g'(x) \)

\[= \frac{1}{2}(7x^3 + x^2 + 1)^{-1/2} \cdot (21x^2 + 2x) \]

11. Chaining the Chain Rule

Differentiate \(f(x) = \sqrt{x + \sqrt{x + 1}} \)
Here we must use the chain rule twice.

The secret is to write the square roots as exponents:

Differentiate $f(x) = (x + (x + 1)^{\frac{1}{2}})^{\frac{1}{2}}$

\[
f'(x) = \frac{1}{2} \left(x + (x + 1)^{\frac{1}{2}} \right)^{-\frac{1}{2}} \cdot \frac{d}{dx} \left(x + (x + 1)^{\frac{1}{2}} \right)
\]

\[
f'(x) = \frac{1}{2} \left(x + (x + 1)^{\frac{1}{2}} \right)^{-\frac{1}{2}} \cdot \left(1 + \frac{d}{dx} (x + 1)^{\frac{1}{2}} \right)
\]

\[
f'(x) = \frac{1}{2} \left(x + (x + 1)^{\frac{1}{2}} \right)^{-\frac{1}{2}} \cdot \left(1 + \frac{1}{2} (x + 1)^{-\frac{1}{2}} \right)
\]

12. The Rules Combined

Differentiate $f(x) = x\sqrt{2x + 1}$

By the product rule, chain rule, and power rule,

\[
f'(x) = 1 \cdot \sqrt{2x + 1} + x \cdot \frac{d}{dx} (2x + 1)^{1/2}
\]

\[
= \sqrt{2x + 1} + x \cdot \frac{1}{2} (2x + 1)^{-1/2} \cdot \frac{d}{dx} (2x + 1)
\]

\[
= \sqrt{2x + 1} + \frac{1}{2} x (2x + 1)^{-\frac{1}{2}} \cdot 2
\]

\[
= \sqrt{2x + 1} + x (2x + 1)^{-\frac{1}{2}}
\]

13. The Rules Combined II

Differentiate $f(x) = \sqrt[3]{\frac{x}{x + 1}}$

By the chain rule, power rule, and quotient rule,

\[
f'(x) = \frac{1}{2} \left(\frac{x}{x + 1} \right)^{-1/2} \cdot \frac{d}{dx} \left(\frac{x}{x + 1} \right)
\]
\[
\frac{1}{2} \left(\frac{x}{x+1} \right)^{-\frac{1}{2}} \cdot \frac{d}{dx} \left(x(x+1)^2 \right) - x \cdot \frac{d}{dx} (x+1) \cdot (x+1)^{-1} \\
= \frac{1}{2} \left(\frac{x}{x+1} \right)^{-\frac{1}{2}} \cdot \frac{1(x+1) - x(1)}{(x+1)^2} \\
= \frac{1}{2} \left(\frac{x}{x+1} \right)^{-\frac{1}{2}} \cdot \frac{1}{(x+1)^2}
\]