7. The Division Algorithm

Theorem. [Division Algorithm] Suppose $a > 0$ and b are integers. Then there is a unique pair of integers q and r such that

$$b = aq + r \quad \text{where} \quad 0 \leq r < a.$$

The number q is called the **quotient** and r is called the **remainder**.

Example: $b = 23$ and $a = 7$. Here $23 = 3 \times 7 + 2$, so $q = 3$ and $r = 2$. In grade school you would have said “7 goes into 23 three times with a remainder of two.” When you learned about fractions (in the fourth grades), you wrote $\frac{23}{7} = 3 \frac{2}{7}$. Observe also that the restriction that the remainder r lies in the range $0 \leq r \leq a - 1$ is essential for uniqueness. For example, it is true that $23 = 2 \times 7 + 9$, but we cannot use $r = 9$ as a remainder because it is larger than the divisor 7; given $b = 23, a = 7$, the *only* values of q and r satisfying $23 = 7q + r$, $0 \leq r \leq 6$ are 3 and 2, respectively.

We can verify the division algorithm by induction on the variable b. It simplifies the discussion to assume that the divisor a is greater than 1.

Question #23. What are the values of q and r if $a = 1$?

First Step: $b = 1$. Here

$$1 = 0 \times a + 1$$

When $b = 1$, the quotient is $q = 0$ and the remainder is $r = 1$.

Next step: Assume the division algorithm holds for the positive integer b, that is, assume

$$b = q \times a + r$$

Can we figure out the values of q and r for $b + 1$? That’s easy.

$$b + 1 = q \times a + (r + 1)$$

Use the old value of q and just increase r by 1.

Wait a minute. What if $r = a - 1$? When we add 1 to r, the new value will not lie between 0 and $a - 1$.

For example, if $a = 5$ and $b = 22$, then from $22 = 4 \times 5 + 2$ we get the next statement $23 = 4 \times 5 + 3$. But if we start with $24 = 4 \times 5 + 4$, the next statement becomes $25 = 4 \times 5 + 5$, which is true, but the remainder 5 does not lie in the required range.
How can we handle this case?

Exercise #24. Complete the induction argument that demonstrates the “existence” part of the Division Algorithm. That is, prove that the required integers \(q \) and \(r \) exist such that \(b = qa + r, \ 0 \leq r < a \).

Exercise #25. Prove the “uniqueness” part of the Division Algorithm. That is, prove that the integers \(q \) and \(r \) are unique, which means that if \((q_1, r_1) \) satisfies \(b = q_1a + r_1, \ 0 \leq r_1 < a \) and \((q_2, r_2) \) also satisfies \(b = q_2a + r_2, \ 0 \leq r_2 < a \), then \(q_1 = q_2 \) and \(r_1 = r_2 \).

The next theorem shows a connection between the division algorithm and congruences.

Theorem #26. Let \(a, b, \) and \(n > 0 \) be integers. Then \(a \equiv b \pmod{n} \) if and only if \(a \) and \(b \) have the same remainder when divided by \(n \).

Exercise #27. Use congruences to find the following remainders:

1. when \(2009 \times 1864 + 195 \) is divided by 7
2. when \(2 \times 3 \times 4 \times 5 \times \cdots \times 19 \times 20 \) is divided by 11
3. when \(2^{100} \) is divided by 7
4. make up your own problem and solve it

8. Mod \(n \) Tables

Here are the addition and multiplication tables for 5-clock arithmetic:

<table>
<thead>
<tr>
<th>+</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\times)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Let’s examine the times table. The zero row and zero column consists of all 0’s. What did we expect? Zero times anything is zero. If we ignore the 0 row and column, the rest of the times table has some interesting properties. Notice, for example, the numbers 1, 2, 3, and 4 are scrambled when we multiply by 2, 3, or 4. That is, each of the rows list the numbers 1, 2, 3, 4 in some order. In the second row we get 2, 4, 1, 3; in the third row we get
3, 1, 4, 2; in the last row the numbers are backwards 4, 3, 2, 1. This scrambling phenomenon is the key idea in constructing the secret codes discussed in a future section.

Problem #28. Construct the $+$ and \times tables for the 7-clock.

Problem #29. Construct the $+$ and \times tables for the 6-clock.

Problem #30. Give the 7th row of the multiplication table for a 31-clock.