Polynomial Congruences

Suppose

\[f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_sx^s \]

where the \(a_i \)'s are integers, and let \(b \) be an integer. Consider the *polynomial* congruence

(1) \[f(x) \equiv b \pmod{m}. \]

An integer \(u \) is a *solution* to (1) means \(f(u) \equiv b \pmod{m} \).

Note that if \(u_0 \) is a solution to (1), then so is any \(u \), where \(u \equiv u_0 \pmod{m} \), because \(u \equiv u_0 \pmod{m} \) implies \(f(u) \equiv f(u_0) \pmod{m} \).

By the *number of solutions* to congruence (1) we mean the number of solutions from any complete residue system mod \(m \).

By a *complete set* of solutions to (1) we mean any set \(u_1, u_2, \ldots, u_t \) of solutions such that

(i) \(u_i \not\equiv u_j \pmod{m} \) for \(i \neq j \)

(ii) every solution to (1) is congruent mod \(m \) to one of the \(u_i \).

Example 1. \(x^2 + 1 \equiv 0 \pmod{5} \)

\(2, 3 \) form a complete set of solutions
The number of solutions is 2.

Example 2. \(x^2 + 1 \equiv 0 \pmod{p} \), where \(p \) is prime.

See the \(x^2 + 1 \) worksheet.

Example 3. Solve \(x^2 \equiv 1 \pmod{8} \). This example shows that a quadratic equation can have more than two roots.

Example 4. Solve \(x^3 + x + 2 \equiv 0 \pmod{5} \).

Example 5. Solve \(x^5 + x^4 + 1 \equiv 0 \pmod{9} \).

Example 6. Solve \(x^2 + 5x + 24 \equiv 0 \pmod{36} \).