As always, in what follows K is a number field. Recall from earlier in the semester that for an $\alpha \in K$ of degree $[K : \mathbb{Q}]$, the discriminant of α is, by definition, the discriminant of the n-tuple (where $n = [K : \mathbb{Q}]$) $\text{disc}(1, \alpha, \ldots, \alpha^{n-1})$. Further, if $\sigma_1, \ldots, \sigma_n$ denote the embeddings of K into \mathbb{C} (in any order), then

$$\text{disc}(1, \alpha, \ldots, \alpha^{n-1}) = \prod_{1 \leq i < j \leq n} (\sigma_i(\alpha) - \sigma_j(\alpha))^2 = (-1)^{n(n-1)/2} N_{K/\mathbb{Q}}(f'(\alpha)),$$

where $f(X) \in \mathbb{Q}[X]$ is the minimal (monic) polynomial for α ($f(X) \in \mathbb{Z}[X]$ if and only if $\alpha \in \mathcal{O}_K$). The principal ideal generated by $f'(\alpha)$ is called the different of α and will be denoted $\mathfrak{d}(\alpha)$. In the case where α has lower degree than $[K : \mathbb{Q}]$ we simply set $\mathfrak{d}(\alpha) = \{0\}$, the zero ideal.

Theorem 1: Let K be a number field of degree n and let $\text{Tr}_{K/\mathbb{Q}}$ denote the trace from K to \mathbb{Q}. Let $\mathfrak{A} \subseteq \mathcal{O}_K$ be an ideal with \mathbb{Z}-basis $\alpha_1, \ldots, \alpha_n$. The set of $\beta \in K$ for which $\text{Tr}_{K/\mathbb{Q}}(\beta \alpha) \in \mathbb{Z}$ for all $\alpha \in \mathfrak{A}$ forms a fractional ideal $\mathcal{I}(\mathfrak{A})$. Moreover $\mathfrak{A} \mathcal{I}(\mathfrak{A})$ is a fractional ideal independent of \mathfrak{A}; it is dependent only on the field K and is the reciprocal of an integral ideal \mathfrak{d}. Finally, a \mathbb{Z}-basis for $\mathcal{I}(\mathfrak{A})$ is given by β_1, \ldots, β_n where these βs satisfy

$$\text{Tr}_{K/\mathbb{Q}}(\beta_i \alpha_j) = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{otherwise.} \end{cases}$$

Proof: If $\beta_1, \beta_2 \in \mathcal{I}(\mathfrak{A})$ and $\gamma \in \mathcal{O}_K$, then for any $\alpha \in \mathfrak{A}$

$$\text{Tr}_{K/\mathbb{Q}}((\beta_1 + \beta_2)\alpha) = \text{Tr}_{K/\mathbb{Q}}(\beta_1 \alpha) + \text{Tr}_{K/\mathbb{Q}}(\beta_2 \alpha) \in \mathbb{Z}$$

and $\text{Tr}_{K/\mathbb{Q}}((\beta \gamma)\alpha) = \text{Tr}_{K/\mathbb{Q}}(\beta(\gamma \alpha)) \in \mathbb{Z}$ since $\gamma \alpha \in \mathfrak{A}$. Thus $\mathcal{I}(\mathfrak{A})$ is an \mathcal{O}_K-module.

Suppose $\beta \in \mathcal{I}(\mathfrak{A})$ and let $\sigma_1, \ldots, \sigma_n$ be the embeddings of K into \mathbb{C} (in any order). We then have $\text{Tr}_{K/\mathbb{Q}}(\beta \alpha_i) \in \mathbb{Z}$ for all $i = 1, \ldots, n$, which we may interpret as saying the column vector

$$\begin{pmatrix} \sigma_1(\beta) \\ \vdots \\ \sigma_n(\beta) \end{pmatrix}$$

is a solution to the linear system $A \mathbf{x} = \mathbf{z}$ where $\mathbf{z} \in \mathbb{Z}^n$ and A is the $n \times n$ matrix $A = (\sigma_j(\alpha_i))$. By Cramer’s rule, we see that the $\sigma_j(\beta)$s are quotients of determinants. Here the numerator of the quotient is some \mathbb{Z}-linear combination of the $\sigma_j(\alpha_i)$s but the denominator is fixed: $\det(A)$. By a previous exercise this denominator is $N(\mathfrak{A}) \sqrt{\Delta(K)}$, whence there is some non-zero $\gamma \in \mathcal{O}_K$ depending only on the α_is such that $\gamma \beta \in \mathcal{O}_K$. In particular, this γ so chosen does not depend on the particular $\beta \in \mathcal{I}(\mathfrak{A})$, so that $\gamma \mathcal{I}(\mathfrak{A}) \subseteq \mathcal{O}_K$. Thus $\mathcal{I}(\mathfrak{A})$ is a fractional ideal.

Next, suppose $\beta \in \mathcal{I}(\mathfrak{A})$ and let $\alpha \in \mathfrak{A}$. Then $\text{Tr}_{K/\mathbb{Q}}(\beta \alpha \gamma) \in \mathbb{Z}$ for all $\gamma \in \mathcal{O}_K$ since $\alpha \gamma \in \mathfrak{A}$. This shows that $\beta \alpha \in \mathcal{I}(\mathcal{O}_K)$. In particular, this is true for $\alpha = \alpha_1, \ldots, \alpha_n$, so that $\mathcal{I}(\mathfrak{A})\mathfrak{A} \subseteq \mathcal{I}(\mathcal{O}_K)$. On the other hand, if $\beta \in \mathcal{I}(\mathcal{O}_K)$ and $\delta_1, \ldots, \delta_n$ is a \mathbb{Z}-basis for \mathfrak{A}^{-1}, then $\alpha \delta_i \in \mathcal{O}_K$ for all $\alpha \in \mathfrak{A}$ and $i = 1, \ldots, n$ and so $\text{Tr}_{K/\mathbb{Q}}(\beta \delta_i \alpha) = \text{Tr}_{K/\mathbb{Q}}(\beta \alpha \delta_i) \in \mathbb{Z}$ for all i. Thus $\beta \delta_i \in \mathcal{I}(\mathfrak{A})$ for all i, so that $\beta \mathfrak{A}^{-1} \subseteq \mathcal{I}(\mathfrak{A})$, i.e., $\beta \in \mathfrak{A} \mathcal{I}(\mathfrak{A})$. This shows that $\mathcal{I}(\mathcal{O}_K) \subseteq \mathfrak{A} \mathcal{I}(\mathfrak{A})$, whence $\mathcal{I}(\mathcal{O}_K) = \mathfrak{A} \mathcal{I}(\mathfrak{A})$.

Clearly $\mathcal{I}(\mathcal{O}_K) = \mathfrak{d}^{-1}$ for some integral ideal \mathfrak{d} since $1 \in \mathcal{I}(\mathcal{O}_K)$.

Turning to the β_i’s sought, as above we view these as solutions to a particular system of linear equations. Indeed, if we consider the $n \times n$ matrix $(\sigma_l(\alpha_j))$, we need to show that the inverse of this matrix is such that the i^{th} row is just the conjugates of some $\beta_i \in K$ for all i. For notational convenience, for $1 \leq i, j \leq n$ set $e_{i,j} = 1$ if $i = j$ and 0 otherwise. Denote the inverse of the matrix $(\sigma_l(\alpha_j))$ by $(x_{i,l})$, so that
\[\sum_{l=1}^{n} x_{i,l} \sigma_l(\alpha_j) = e_{i,j}, \quad j = 1, \ldots, n. \]
We have
\[\sum_{l=1}^{n} \sigma_l(\alpha_k) \sum_{i=1}^{n} x_{i,l} \sigma_j(\alpha_i) = \sum_{i=1}^{n} e_{i,k} \sigma_j(\alpha_i) = \sigma_j(\alpha_k) = \sum_{l=1}^{n} e_{l,j} \sigma_l(\alpha_k). \]
Now equating coefficients yields $\sum_{i=1}^{n} x_{i,l} \sigma_j(\alpha_i) = e_{l,j}$, so that
\[\sum_{i=1}^{n} x_{i,l} \sigma_j(\alpha_i) = e_{l,j} \sum_{i=1}^{n} \sigma_j(\alpha_i) = \sigma_l(\alpha_k). \]
Thus
\[\sum_{i=1}^{n} x_{i,l} \text{Tr}_{K/\mathbb{Q}}(\alpha_i \alpha_k) = \sigma_l(\alpha_k). \]

Now one of these embeddings σ_l is simply the identity map, and in this case the equation above has “solutions” $x_{1,l}, \ldots, x_{n,l} \in K$; denote these more simply by β_1, \ldots, β_n so that
\[\sum_{i=1}^{n} \beta_i \text{Tr}_{K/\mathbb{Q}}(\alpha_i \alpha_k) = \alpha_k, \quad k = 1, \ldots, n. \]

Since the coefficients $\text{Tr}_{K/\mathbb{Q}}(\alpha_i \alpha_k) \in \mathbb{Q}$ here, we may apply any embedding and get $x_{i,l} = \sigma_l(\beta_i)$ always, which is what we needed to show.

Definition: The integral ideal \mathfrak{d} in Theorem 1 above is called the *different* of the field K.

Corollary: The different and discriminant of a number field K satisfy $N(\mathfrak{d}) = |D(K)|$.

Proof: Let \mathfrak{A} be any non-zero fractional ideal and let β_1, \ldots, β_n be the basis for $\mathfrak{I}(\mathfrak{A})$ as in Theorem 1. Then
\[\text{disc}(\beta_1, \ldots, \beta_n) = N(\mathfrak{I}(\mathfrak{A}))^2 D(K) = \frac{D(K)}{N(\mathfrak{A})^2} = \frac{D(K)}{N(\mathfrak{A})^2 N(\mathfrak{d})^2} \]
and also
\[\text{disc}(\beta_1, \ldots, \beta_n) = \frac{1}{\text{disc}(\alpha_1, \ldots, \alpha_n)} = \frac{1}{N(\mathfrak{A})^2 D(K)}. \]

Lemma 1: Suppose $\alpha \in \mathfrak{d}^{-1}$. Then for all $\theta \in \mathfrak{D}_K$ of degree $[K : \mathbb{Q}]$ we have $\alpha f'(\theta) \in \mathbb{Z}[\theta]$, where $f(X) \in \mathbb{Z}[X]$ is the minimal polynomial for θ.

Proof: Set $n = [K : \mathbb{Q}]$ and let $\sigma_1, \ldots, \sigma_n$ be the embeddings of K into \mathbb{C}. Consider the polynomial $g(X) \in \mathbb{C}[X]$ given by
\[g(X) = f(X) \sum_{i=1}^{n} \frac{\sigma_i(\alpha)}{X - \sigma_i(\theta)}. \]
Note that \(g(X) \in \mathbb{C}[X] \) since \(f(X) = \prod_{i=1}^{n} (X - \sigma_i(\theta)) \). We claim that \(g(X) \in \mathbb{Z}[X] \).

To see why, we look at the polynomial \(f(X)/(X - \theta) \) (a polynomial since \(\theta \) is a root of \(f(X) \) by construction). Write \(f(X) = a_0 + a_1 X + \cdots + X^n \) and set

\[
h(X) = \sum_{i=1}^{n} a_i \sum_{j=0}^{i-1} X^j \theta^{i-j-1}.
\]

We have

\[
(X - \theta)h(X) = \sum_{i=1}^{n} a_i \sum_{j=0}^{i-1} X^j \theta^{i-j-1} - \sum_{i=1}^{n} a_i \sum_{j=0}^{i-1} X^j \theta^{i-j} = \sum_{i=1}^{n} a_i \sum_{j=0}^{i-1} X^j \theta^{i-j} - \sum_{i=1}^{n} a_i X^i \theta^{i-1} = \sum_{i=1}^{n} a_i (X^i - \theta^i) = f(X) - a_0 - (f(\theta) - a_0) = f(X) - f(\theta) = f(X).
\]

Thus \(h(X) = f(X)/(X - \theta) \). We now take traces and get

\[
g(X) = \text{Tr}_{K/\mathbb{Q}}(\alpha h(X)) = \sum_{i=1}^{n} a_i \sum_{j=0}^{i-1} X^j \text{Tr}_{K/\mathbb{Q}}(\alpha \theta^{i-j-1}).
\]

But each \(\theta^{i-j-1} \in \mathcal{O}_K \) here and \(\alpha \in \mathcal{O}^{-1} = \mathcal{J}(\mathcal{O}_K) \) by hypothesis. Thus \(\text{Tr}_{K/\mathbb{Q}}(\alpha \theta^{i-j-1}) \in \mathbb{Z} \), so that \(g(X) \in \mathbb{Z}[X] \) as claimed.

We complete the proof by evaluating \(g(X) \) at \(X = \theta \), giving \(\alpha f'(\alpha) = g(\theta) \in \mathbb{Z}[\theta] \).

Lemma 2 (Lagrange Interpolation Formula): Suppose \(f(X) = (X - \rho_1) \cdots (X - \rho_n) \in \mathbb{C}[X] \) with distinct roots \(\rho_1, \ldots, \rho_n \). Then

\[
\sum_{i=1}^{n} \frac{\rho_i^{j+1}}{f'(\rho_i)} f(X) = \begin{cases} X^{j+1} & \text{for } j = 0, \ldots, n-2, \\ X^n - f(X) & \text{for } j = n-1. \end{cases}
\]

Proof: Fix a \(j \) between 0 and \(n-1 \) for the moment and consider the polynomial

\[
g(X) = X^{j+1} - \sum_{i=1}^{n} \frac{\rho_i^{j+1}}{f'(\rho_i)} f(X).
\]

Note that this is indeed a polynomial since \((X - \rho_i)|f(X) \) for each \(i \) and \(f'(\rho_i) \neq 0 \) since each \(\rho_i \) is a simple root. We note that \(g(\rho_i) = 0 \) for all \(i \), so that \(g(X) \) has at least \(n \) roots. On the other hand, it’s clear from the definition that the degree of \(g(X) \) is at most the maximum of \(j + 1 \) and \(n - 1 \). This shows that \(g(X) \) is identically 0 if \(j < n - 1 \). In the case \(j = n - 1 \), the polynomials \(g(X) \) and \(f(X) \) share the exact same roots, so that their quotient is a constant; say \(g(X) = \epsilon f(X) \). Since

\[
\lim_{x \to x} \frac{g(X)}{f(X)} = \lim_{x \to x} \frac{X^n}{f(X)} - \sum_{i=1}^{n} \frac{\rho_i^n}{f'(\rho_i)(X - \rho_i)} = 1 - 0,
\]

3
we see that \(g(X) = f(X) \) when \(j = n - 1 \).

Lemma 3: With the hypotheses in Lemma 1, for all \(\beta \in \mathbb{Z}[\theta] \) we have \(\text{Tr}_{K/Q}(\beta/f'(\theta)) \in \mathbb{Z} \).

Proof: By hypothesis \(\mathbb{Z}[\theta] \) is a \(\mathbb{Z} \)-module with basis \(1, \ldots, \theta^{n-1} \), so it suffices to prove the lemma for just those elements of \(\mathbb{Z}[\theta] \). We apply Lemma 2 to \(f(X) \) and set \(X = 0 \) to get

\[
\text{Tr}_{K/Q}(\theta^j/f'\theta) = \sum_{i=1}^{n} \frac{\sigma_i(\theta)^j}{f'(\sigma_i(\theta))} = \begin{cases}
0 & \text{if } 0 \leq j < n - 1, \\
1 & \text{if } j = n - 1.
\end{cases}
\]

For \(\theta \in \mathcal{O}_K \) as in Lemma 1, we see that the principal ideal generated by \(f'(\theta) \), i.e., the different \(\mathfrak{d}(\theta) \), satisfies \(\mathfrak{d}^{-1}\mathfrak{d}(\theta) \subseteq \mathbb{Z}[\theta] \subseteq \mathcal{O}_K \), so that \(\mathfrak{d}(\theta) = \mathfrak{d}f(\theta) \) for some ideal \(f(\theta) \). This ideal is called the **conductor** of the element \(\theta \).

Theorem 2: Let \(K \) be a number field and let \(\theta \in \mathcal{O}_K \) be of degree \([K: Q] \). Then the conductor \(f(\theta) \subseteq \mathbb{Z}[\theta] \) and any ideal \(\mathfrak{A} \subseteq \mathbb{Z}[\theta] \) is divisible by the conductor \(f(\theta) \).

Proof: Suppose \(\beta \in f(\theta) \). Then \(\alpha = \beta/f'(\theta) \in \mathfrak{d}^{-1} \), so by Lemma 1 \(\beta = \alpha f'\theta \in \mathbb{Z}[\theta] \).

Now suppose \(\mathfrak{A} \) is an ideal contained in \(\mathbb{Z}[\theta] \). Then \(\text{Tr}_{K/Q}(\alpha/f'(\theta)) \in \mathbb{Z} \) for all \(\alpha \in \mathfrak{A} \) by Lemma 3. This implies by Theorem 1 that \(1/f'(\theta) \in \mathcal{I}(\mathfrak{A}) = (\mathfrak{d}\mathcal{O})^{-1} \). Thus the principal ideal generated by \(1/f'(\theta) \) is contained in \((\mathfrak{A}\mathcal{O})^{-1} \), so that taking inverses yields \(f(\theta)\mathfrak{d} \supseteq \mathfrak{A}\mathcal{O} \). Therefore \(\mathfrak{A} \) is divisible by the conductor of \(\theta \).

Theorem 3: For any number field \(K \) the different \(\mathfrak{d} \) is the greatest common divisor of the differentials \(\mathfrak{d}(\theta) \) of all integers \(\theta \in \mathcal{O}_K \).

Proof: Fix a prime \(\mathfrak{P} \). We will show that there is a \(\theta \in \mathcal{O}_K \) of degree \([K: Q] \) whose conductor is not divisible by \(\mathfrak{P} \). This implies that the greatest common divisor of the conductors is \(\mathcal{O}_K \), whence \(\mathfrak{d} \) is the greatest common divisor of all the differentials \(\mathfrak{d}(\theta) \).

The field \(\mathcal{O}_K/\mathfrak{P} \), being finite, has the property that the multiplicative group of non-zero elements is cyclic. In other words, there is an element \(\theta \in \mathcal{O}_K \) such that

\[
\mathcal{O}_K/\mathfrak{P} = \{0 + \mathfrak{P}, \theta + \mathfrak{P}, \ldots, \theta^{N(\mathfrak{P})-1} + \mathfrak{P}\}.
\]

Set

\[
S_0(\theta) = \{0, \ldots, \theta^{N(\mathfrak{P})-1}\}.
\]

Obviously such an element \(\theta \) is not itself in \(\mathfrak{P} \) and is only unique modulo \(\mathfrak{P} \). We will use this flexibility to choose such an element with particular attributes.

First, we may choose \(\theta \) such that \(\theta^{N(\mathfrak{P})} - \theta \not\in \mathfrak{P}^2 \). Indeed, if our original choice of \(\theta \) doesn’t fit the bill, then simply adding an element of \(\mathfrak{P} \setminus \mathfrak{P}^2 \) to it works. Moreover, adding any element of \(\mathfrak{P}^2 \) to our desired choice does no harm here.

Next, let \(p \) be the rational prime element of \(\mathfrak{P} \) and write \(p\mathcal{O}_K = \mathfrak{P}^e \mathfrak{A} \) where \(\mathfrak{A} \) is relatively prime to \(\mathfrak{P} \). By adding a suitable element of \(\mathfrak{P}^2 \) to our \(\theta \) if necessary, we may assume further that \(\theta \in \mathfrak{A} \) and the degree of \(\theta \) is \([K: Q] \). For any positive integer \(l \) set

\[
S_l(\theta) = \{\gamma_0 + \gamma_1 \alpha + \cdots + \gamma_l \alpha^l: \alpha = \theta^{N(\mathfrak{P})} - \theta, \, \gamma_i \in S_0(\theta)\} \subseteq \mathbb{Z}[\theta].
\]

Then

\[
(*) \quad \mathcal{O}_K/\mathfrak{P}^l = \{\delta + \mathfrak{P}^l: \delta_i \in S_l(\theta)\}.
\]
We claim that \(f(\theta) \) is not divisible by \(\mathfrak{P} \). To see why, write \(N(\mathfrak{a}f(\theta)) = p^k a \) for some rational integer \(a \) relatively prime to \(p \) and some non-negative integer \(k \). Given any \(\beta \in \mathcal{O}_K \), via (*) with \(l = e_\mathfrak{P} k \), there is a \(\rho \in \mathbb{Z}[\theta] \) such that \(\beta - \rho \in \mathfrak{P}^{e_\mathfrak{P} k} \). Now

\[
\frac{(\beta - \rho)a^k}{f'(\theta)} = \frac{(\beta - \rho)a^k N(\mathfrak{a}f(\theta))}{\mathfrak{a}f(\theta)p^k} = \frac{N(\mathfrak{a}f(\theta))}{\mathfrak{a}f(\theta)} \frac{(\beta - \rho)a^k}{\mathfrak{P}^{e_\mathfrak{P} k} \mathfrak{a}^k}.
\]

(Here individual elements are to be interpreted as the corresponding principal fractional ideal.) We thus see that \((\beta - \rho)a^k / f'(\theta) \in \mathcal{O}_K \subseteq \mathfrak{d}^{-1} \). By Lemma 1

\[
\frac{(\beta - \rho)a^k}{f'(\theta)} = \frac{\rho'}{f'(\theta)}
\]

for some \(\rho' \in \mathbb{Z}[\theta] \). In particular, \(\beta - \rho = \frac{\rho'}{a^k} \). But now \(a\theta^k \beta = a\theta^k \rho + \rho' \in \mathbb{Z}[\theta] \). The upshot is that, since \(\beta \) was arbitrary, the entire principal ideal \(a\theta^k \mathcal{O}_K \subseteq \mathbb{Z}[\theta] \). Finally, by Theorem 2 we see that \(f(\theta) \) is not divisible by \(\mathfrak{P} \), since neither \(a \) nor \(\theta \) are elements of \(\mathfrak{P} \).