Throughout these notes, K denotes a number field with ring of integers \mathcal{O}_K. The upper case script German ("fraktur") font will be used to denote fractional ideals and the lower case Greek font will be used to denote elements of K.

Fundamental Theorem: The set of non-zero fractional ideals of K is a free abelian group on (generated by) the maximal ideals of \mathcal{O}_K.

Note that the binary group operation here is multiplication of fractional ideals. Thus, the Fundamental Theorem asserts that any non-zero fractional ideal $I \neq \mathcal{O}_K$ can be written uniquely as a product

$$I = P_1^{e_1} \cdots P_r^{e_r},$$

where the P_is are maximal (i.e., non-zero prime) ideals and the e_is are non-zero elements of \mathbb{Z}. The identity element of this group is \mathcal{O}_K. The non-zero ideals are the monoid consisting of those I where the corresponding exponents e_i in (1) are all positive, together with \mathcal{O}_K. If necessary, look up the definitions of free abelian group and monoid in any reasonable algebra text.

For two non-zero ideals A and B, we are on firm ground saying $A \mid B$ if $B = AC$ for some non-zero ideal C by the Fundamental Theorem. Note that $A \mid B$ if and only if $A \supseteq B$ as sets.

Definitions/Notation: For a non-zero fractional ideal I as in (1) above, the order of I at the maximal ideal P_i is e_i for $i = 1, \ldots, r$. For all other maximal ideals P, the order of I at P is 0. The order of \mathcal{O}_K at P is 0 for all maximal ideals P. We write $\text{ord}_P(I)$ for the order of I at P.

Given two non-zero ideals A and B, we define the greatest common divisor and least common multiple of A and B to be the non-zero ideals $\gcd(A, B)$ and $\lcm(A, B)$ defined by

$$\text{ord}_P(\gcd(A, B)) = \min\{\text{ord}_P(A), \text{ord}_P(B)\}$$

and

$$\text{ord}_P(\lcm(A, B)) = \max\{\text{ord}_P(A), \text{ord}_P(B)\}$$

for all maximal ideals P. We say A and B are relatively prime if their greatest common divisor is \mathcal{O}_K.

For non-zero $\alpha, \beta \in \mathcal{O}_K$ we define $\text{ord}_P(\alpha) = \text{ord}_P((\alpha))$, where (α) is the principal ideal generated by α. We define $\gcd(\alpha, \beta) = \gcd((\alpha), (\beta))$ and $\lcm(\alpha, \beta) = \lcm((\alpha), (\beta))$. Occasionally it is handy to define $\text{ord}_P(0) = \infty$.

Note that the $\gcd(A, B)$ is the smallest (set-theoretically) ideal which contains both A and B. In other words,

$$\gcd(A, B) = A + B := \{\alpha + \beta : \alpha \in A, \beta \in B\}.$$

Similarly, the $\lcm(A, B)$ is the largest (set-theoretically) ideal which is contained in both A and B. It isn’t difficult to see that

$$\gcd(A, B)\lcm(A, B) = AB.$$

It’s a simple matter to extend these definitions to any finite collection of ideals, so that

$$\gcd(A_1, \ldots, A_r) = A_1 + \cdots + A_r.$$
Remarks: Clearly \(\text{ord}_P(\mathfrak{A}\mathfrak{B}) = \text{ord}_P(\mathfrak{A}) + \text{ord}_P(\mathfrak{B}) \). Since \(\mathfrak{A} + \mathfrak{B} = \text{gcd}(\mathfrak{A}, \mathfrak{B}) \), we have \(\text{ord}_P(\mathfrak{A} + \mathfrak{B}) = \min\{\text{ord}_P(\mathfrak{A}), \text{ord}_P(\mathfrak{B})\} \). However, it is not generally the case that \((\alpha) + (\beta) = (\alpha + \beta) \) for \(\alpha, \beta \in \mathcal{O}_K \). Since \((\alpha) + (\beta)|(\alpha + \beta) \), we do have

\[
\text{ord}_P(\alpha + \beta) \geq \min\{\text{ord}_P(\alpha), \text{ord}_P(\beta)\}.
\]

You can check that this is an equality whenever \(\text{ord}_P(\alpha) \neq \text{ord}_P(\beta) \).

Lemma 1: Let \(\mathfrak{A} \) be a non-zero ideal and \(\alpha \in \mathcal{O}_K \setminus \{0\} \). Then there is a non-zero ideal \(\mathfrak{B} \) with \(\mathfrak{A}\mathfrak{B} = (\alpha) \) if and only if \(\alpha \in \mathfrak{A} \).

As for proof, by the Fundamental Theorem \(\mathfrak{A}\mathfrak{B} = (\alpha) \) if and only if \(\mathfrak{B} = (\alpha)\mathfrak{A}^{-1} \), and \((\alpha)\mathfrak{A}^{-1} \subseteq \mathcal{O}_K \) if and only if \((\alpha) \subseteq \mathfrak{A} \).

Lemma 2: Let \(\mathfrak{A} \) and \(\mathfrak{B} \) be non-zero ideals. Then there is an \(\alpha \in \mathfrak{A} \) with \(\text{gcd}((\alpha), \mathfrak{AB}) = \mathfrak{A} \).

Proof: This is obvious if \(\mathfrak{A} = \mathcal{O}_K \) (just use \(\alpha = 1 \)), so assume \(\mathfrak{A} \neq \mathcal{O}_K \). Let \(\mathfrak{P}_1, \ldots, \mathfrak{P}_r \) be the maximal ideals occurring in the unique factorization of \(\mathfrak{A}\mathfrak{B} \). To ease notation here, let \(e_i = \text{ord}_{\mathfrak{P}_i}(\mathfrak{A}) \) for \(i = 1, \ldots, r \). Define

\[
\mathfrak{A}_i = \mathfrak{A}\mathfrak{P}_1 \cdots \mathfrak{P}_{i-1} \mathfrak{P}_i^{-e_i-1}, \quad i = 1, \ldots, r.
\]

Note that

\[
\text{ord}_{\mathfrak{P}_j}(\mathfrak{A}_i) = \begin{cases} 0 & \text{if } i = j, \\ e_j + 1 \geq 1 & \text{otherwise}. \end{cases}
\]

Thus, \(\text{gcd}(\mathfrak{A}_1, \ldots, \mathfrak{A}_r) = \mathcal{O}_K \), which implies that there are \(\alpha_i \in \mathfrak{A}_i \) for \(i = 1, \ldots, r \) with

\[
(2) \quad \alpha_1 + \cdots + \alpha_r = 1.
\]

Since each \(\alpha_i \in \mathfrak{A}_i \) we have

\[
(3) \quad \text{ord}_{\mathfrak{P}_j}(\alpha_i) \geq \text{ord}_{\mathfrak{P}_j}(\mathfrak{A}_i) = e_j + 1 \geq 1 \quad i \neq j.
\]

Since \(\text{ord}_{\mathfrak{P}_i}(1) = 0 \) for all maximal ideals \(\mathfrak{P}_i \), the Remarks above together with (2) and (3) implies that

\[
(4) \quad \text{ord}_{\mathfrak{P}_i}(\alpha_i) = 0, \quad i = 1, \ldots, r.
\]

Now choose \(\beta_i \in \mathfrak{P}_i^{e_i} \setminus \mathfrak{P}_i^{e_i+1} \) for all \(i = 1, \ldots, r \) and let

\[
\alpha = \alpha_1 \beta_1 + \cdots + \alpha_r \beta_r.
\]

By construction we have \(\text{ord}_{\mathfrak{P}_i}(\beta_i) = e_i \) for all \(i = 1, \ldots, r \). This together with (3), (4) and the Remarks above show that

\[
\text{ord}_{\mathfrak{P}_i}(\alpha) = e_i, \quad i = 1, \ldots, r.
\]

Since \(\text{ord}_{\mathfrak{P}_i}(\mathfrak{A}\mathfrak{B}) = 0 \) for all \(\mathfrak{P}_i \) not among \(\mathfrak{P}_1, \ldots, \mathfrak{P}_r \), we have \(\gcd((\alpha), \mathfrak{A}\mathfrak{B}) = \mathfrak{A} \).

Combining Lemmas 1 and 2 give us the following result.

Lemma 3: Let \(\mathfrak{A} \) be a non-zero ideal and let \(\beta \in \mathfrak{A} \setminus \{0\} \). Then there is an \(\alpha \in \mathfrak{A} \) with \(\gcd(\alpha, \beta) = \mathfrak{A} \). In particular, all non-zero ideals can be viewed as the greatest common divisor of two integers.
We can speak of congruences in \mathcal{O}_K in much the same way we do in \mathbb{Z}. Specifically, for a non-zero ideal \mathfrak{a} and $\alpha, \beta \in \mathcal{O}_K$, we say α is congruent to β modulo \mathfrak{a} if $\alpha - \beta \in \mathfrak{a}$. We denote this more compactly by writing $\alpha \equiv \beta \mod \mathfrak{a}$. A more “advanced” way to say this is $\alpha + \mathfrak{a} = \beta + \mathfrak{a}$ as elements of the quotient ring $\mathcal{O}_K/\mathfrak{a}$.

The existence of solutions to linear congruences is very much the same as it is with \mathbb{Z}.

Lemma 4: Let \mathfrak{a} be a non-zero ideal and let $\alpha, \beta \in \mathcal{O}_K$. Then the congruence $X\alpha \equiv \beta \mod \mathfrak{a}$ has a solution in \mathcal{O}_K if and only if $\gcd ((\alpha), \mathfrak{a}) | (\beta)$.

As for proof, convince yourself that this congruence has a solution if and only if $\beta \in \mathfrak{a} + (\alpha)$, that is, $(\beta) \subseteq \gcd ((\alpha), \mathfrak{a})$.

We also know when we can solve simultaneous congruences.

Chinese Remainder Theorem: Let $\mathfrak{a}_1, \ldots, \mathfrak{a}_r$ be non-zero ideals which are pair-wise relatively prime, i.e., $\mathfrak{a}_i + \mathfrak{a}_j = \mathcal{O}_K$ whenever $i \neq j$. Let \mathcal{I} denote the product $\mathfrak{a}_1 \cdots \mathfrak{a}_r$. Then

$$\mathcal{O}_K/\mathcal{I} \cong \mathcal{O}_K/\mathfrak{a}_1 \times \cdots \times \mathcal{O}_K/\mathfrak{a}_r.$$

In particular, given $\beta_1, \ldots, \beta_r \in \mathcal{O}_K$ there is an $\alpha \in \mathcal{O}_K$ with

$$\alpha \equiv \beta_i \mod \mathfrak{a}_i, \quad i = 1, \ldots, r$$

and this α is unique modulo \mathcal{I}.

Proof: We prove this by induction on r. First assume $r = 2$ and write $1 = \alpha_1 + \alpha_2$ with $\alpha_1 \in \mathfrak{a}_1$ and $\alpha_2 \in \mathfrak{a}_2$. Verify that the map

$$\beta + \mathcal{I} \mapsto (\beta + \mathfrak{a}_1, \beta + \mathfrak{a}_2)$$

gives a well-defined one-to-one ring homomorphism from $\mathcal{O}_K/\mathcal{I}$ to $\mathcal{O}_K/\mathfrak{a}_1 \times \mathcal{O}_K/\mathfrak{a}_2$. To see that it is onto, let $\gamma_1, \gamma_2 \in \mathcal{O}_K$. Then $\gamma_1 \alpha_2 + \gamma_2 \alpha_1 + \mathcal{I}$ is mapped to $(\gamma_1 + \mathfrak{a}_1, \gamma_2 + \mathfrak{a}_2)$ since

$$\alpha_2 \equiv 1 \mod \mathfrak{a}_1 \quad \alpha_1 \equiv 0 \mod \mathfrak{a}_1$$
$$\alpha_1 \equiv 1 \mod \mathfrak{a}_2 \quad \alpha_2 \equiv 0 \mod \mathfrak{a}_2.$$

For $r > 2$, let $\mathfrak{B} = \mathfrak{a}_1^{-1}$. Then $\gcd (\mathfrak{B}, \mathfrak{a}_1) = 1$ and by the induction hypothesis (twice) we have

$$\mathcal{O}_K/\mathcal{I} \cong \mathcal{O}_K/\mathfrak{a}_1 \times \mathcal{O}_K/\mathfrak{B} \cong \mathcal{O}_K/\mathfrak{a}_1 \times \mathcal{O}_K/\mathfrak{a}_2 \times \cdots \times \mathcal{O}_K/\mathfrak{a}_r.$$

Since the norm of a non-zero ideal \mathcal{I} is the index $[\mathcal{O}_K : \mathcal{I}]$, which is simply the cardinality of the quotient ring, we get the following.

Corollary: Let $\mathfrak{a}_1, \ldots, \mathfrak{a}_r$ be pair-wise relatively prime non-zero ideals. Then

$$N(\mathfrak{a}_1 \cdots \mathfrak{a}_r) = N(\mathfrak{a}_1) \cdots N(\mathfrak{a}_r).$$
Lemma 5: Let \(\mathfrak{P} \) be a maximal ideal and \(e \) be a non-negative integer. Then

\[
[\mathfrak{P}^e : \mathfrak{P}^{e+1}] = N(\mathfrak{P}).
\]

Thus,

\[
N(\mathfrak{P}^e) = N(\mathfrak{P})^e.
\]

Proof: Let \(\alpha \in \mathfrak{P}^e \setminus \mathfrak{P}^{e+1} \). Then \(\gcd((\alpha), \mathfrak{P}^{e+1}) = \mathfrak{P}^e \). By Lemma 4, for any \(\beta \in \mathfrak{P}^e \) we can solve the congruence \(\chi \alpha \equiv \beta \mod \mathfrak{P}^{e+1} \). Moreover, \(\gamma_1 \alpha \equiv \gamma_2 \alpha \mod \mathfrak{P}^{e+1} \) if and only if \(\mathfrak{P}^{e+1} | (\gamma_1 - \gamma_2)(\alpha) \), which it true if and only if \(\mathfrak{P} | (\gamma_1 - \gamma_2) \). In other words, the solutions to the congruence \(\chi \alpha \equiv \beta \mod \mathfrak{P}^{e+1} \) are all congruent modulo \(\mathfrak{P} \). Thus, there are precisely \(N(\mathfrak{P}) \) elements of \(\mathfrak{P}^e \) which are incongruent modulo \(\mathfrak{P}^{e+1} \).

Finally, we have

\[
[\mathfrak{O}_K : \mathfrak{P}^e] = [\mathfrak{O}_K : \mathfrak{P}] [\mathfrak{P} : \mathfrak{P}^2] \cdots [\mathfrak{P}^{e-1} : \mathfrak{P}] = N(\mathfrak{P})^e.
\]

Combining the Corollary to the Chinese Remainder Theorem with Lemma 5 gives the following.

Theorem: For any maximal ideals \(\mathfrak{P}_1, \ldots, \mathfrak{P}_r \) and non-negative integers \(e_1, \ldots, e_r \) we have

\[
N(\mathfrak{P}_1^{e_1} \cdots \mathfrak{P}_r^{e_r}) = N(\mathfrak{P}_1)^{e_1} \cdots N(\mathfrak{P}_r)^{e_r}.
\]

Given this, it is natural to extend the definition of norm to all non-zero fractional ideals by defining

\[
N(\mathfrak{J}) = N(\mathfrak{P}_1)^{e_1} \cdots N(\mathfrak{P}_r)^{e_r}
\]

for all non-zero fractional ideals \(\mathfrak{J} \) as in (1). With this extended definition, the norm is a group homomorphism from the non-zero fractional ideals to the positive rational numbers. Moreover, it “does the right thing” in regards to indices and quotient rings. See exercise #2 from homework #4.

Given a prime number \(p \in \mathbb{Z} \), we apply the Fundamental Theorem to the principal ideal generated by \(p \) in \(\mathfrak{O}_K \),

\[
p\mathfrak{O}_K = \mathfrak{P}_1^{e_1} \cdots \mathfrak{P}_r^{e_r}.
\]

Note that the non-zero prime ideals \(\mathfrak{P}_1, \ldots, \mathfrak{P}_r \) here are precisely those prime ideals of \(\mathfrak{O}_K \) that contain the prime number \(p \). We say these prime ideals lie above \(p \). An earlier exercise showed that \(\mathfrak{O}_K/\mathfrak{P}_i \) was a finite field of characteristic \(p \), thus is the finite field with \(p^{e_i} \) elements for some positive integer \(f_i \). Another exercise applied to the principal ideal \(p\mathfrak{O}_K \) showed that \(N(p\mathfrak{O}_K) = |N_{K/\mathbb{Q}}(p)| = p^n \), where \(n = [K : \mathbb{Q}] \). Therefore by the Theorem and equation (5) above

\[[K : \mathbb{Q}] = n = e_1 f_1 + \cdots + e_r f_r. \]

Definition: The exponents \(e_i \) in (5) are called the **ramification indices** of the prime ideals \(\mathfrak{P}_i \). If \(e_i > 1 \) for any \(i \) we say the prime number \(p \) **ramifies** in the number field \(K \). The positive integers \(f_i \) are called the **residue class degrees** or **inertial degrees** of the prime ideals \(\mathfrak{P}_i \).

Obviously an important task is to determine the ramification indices and residue class degrees. We’ll work hard to show that the prime numbers \(p \) that ramify are precisely the primes dividing the discriminant. Thus the ramification index is equal to 1 with finitely many exceptions.