Part A Solve seven of the following eight problems.

1. Let G be a group, and let H and K be isomorphic subgroups of G. Prove or disprove:
 \textit{If H is normal in G, then K is normal in G.}

2. Prove that there is no simple group of order 36.

3. Let p be a prime number, and let G be a nontrivial finite p-group.
 \begin{enumerate}
 \item Let X be a finite set on which G acts. Prove that $|X| \equiv |X^G| \pmod{p}$, where $X^G = \{x \in X \mid a \cdot x = x \text{ for all } a \in G\}$.
 \item Use part (a) to deduce that the center of G is nontrivial.
 \end{enumerate}

4. Consider the ring $R = M_2(\mathbb{Z})$ consisting of all 2×2 matrices with integer entries. Let I be the subset of R consisting of all matrices with even entries. Then I is an ideal of R and the factor ring R/I is finite. \textbf{Your task:} Determine the exact number of elements contained in R/I.

5. Let F/K be a field extension, and suppose that $u \in F$ is algebraic over K.
 \begin{enumerate}
 \item Prove that there exists a unique monic irreducible polynomial $p(x) \in K[x]$ with $p(u) = 0$.
 \item Prove that if $f(x)$ is any polynomial in $K[x]$ with $f(u) = 0$, then $p(x)$ divides $f(x)$ in $K[x]$.
 \end{enumerate}

6. Determine the isomorphism type of the Galois group of the polynomial $f(x) = x^4 - 2$ over $\mathbb{Q}(i)$.

7. Let F/K be a Galois extension, and suppose that $\text{Aut}(F/K) \cong S_4$.
 \begin{enumerate}
 \item Prove that there are at least 10 distinct fields strictly between K and F.
 \item Prove that there is a field E strictly between F and K such that E/K is Galois. Describe the Galois group of E/K.
 \end{enumerate}

8. Let V be a finite-dimensional complex vector space, and let S, T be linear operators on V such that $ST = TS$. Recall that a subspace W of V is said to be invariant under T if $T(W) \subseteq W$.
 \begin{enumerate}
 \item Prove that if λ is an eigenvalue of S, then the eigenspace $V_\lambda = \{\vec{x} \in V \mid S(\vec{x}) = \lambda \vec{x}\}$ is invariant under T.
 \item Prove that S and T have at least one common eigenvector (not necessarily associated to the same eigenvalue).
Part B Solve three of the following four problems.

1. Prove that, in a principal ideal domain, every nonzero prime ideal is maximal.

2. Let R be a ring, and let M be an R-module. Prove that M is artinian (that is, M satisfies the descending chain condition) if and only if every nonempty set of R-submodules of M has a minimal element.

3. Let R be a commutative ring. Prove that R is semisimple if and only if R is isomorphic to a finite direct product of fields.

4. Let T be an integral ring extension of S, and let S be an integral ring extension of R. Prove that T is an integral ring extension of R.